![]() Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву ![]() Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Heine-borel Theorem. Bolzano-Weierstrass Theorem.Содержание книги
Поиск на нашем сайте
Answer: If H is an open covering of a closed and bounded subset S of the real line, then S has an open covering H consisting of finitely many open sets belonging to H. Proof: Since S bounded, it has an infimumα and supremum β, and, since S is closed,α and β belong to S. Define St=S and let F={t|α<t<β and finitely many sets form H cover St} Since Sβ =S1 the theorem will be proved, if we can show that β Since α Since, F is nonempty and bounded above by β, it has supremumλ. First, we wish to show that λ=β by definition of F, it suffices to rull out the possibility that α<β. We consider two cases: Case 1. Suppose that α<β and λ However, the definition of λ implies that Sλ-ε has a finite subcovering from H, while Sλ+εdoes not. This is a contradiction. 3.2 Case 2. Suppose that λ<β and λ Now we know that α=β, which is in S. Therefore, there is an open set Hβ in H that contains β and along with, an interval of the from [β-ε,β+ε], for some positive ε. Since Sβ-ε is covered by a finite collection of set {H1,…,Hk}, Sp is covered by the finite collection {H1,…,Hk,Hβ}. Since Sβ=S1. Henceforth, we will say a closed and bounded set is compact. As an application of the Heine-Borel theorem, we prove the following theorem of Bolzano andWeierstrass. Bolzano-Weierstrass theorem. Every boumded infinite set of real numbers has at least one limit point. Proof: We will show that a bounded nonempty set without a limit point can contain only a finite number of points. If S has no limitpoints,then S is closed and every point x of S has an open neighborhood Nx that contains no point of other than x. The collection H={Nx| x
Sequences of real numbers. Monotonic Sequences. Answer: We denote a sequence by {xn}oon=1. The real number xn is the n -th term of the sequence. Definition. A sequence {xn} converges to a limit a if for every ε>0 there is an integer nε such that |xn-a|<ε, if n>nε In this case we say that {xn} is convergent and we write A sequence that does not converge diverges or is divergent. Theorem. The limit of a convergent sequence is unique. Proof: Suppose that This inequelities both hold, if n>N=max(N1, N2) which implies that |a-b|=|a-xn+xn-b|≤|a-xn|+|xn-b|=ε+ε=2ε Since, this inequality holds for every ε>0 and |a-b|=0; that is a=b We say that Definition. A sequence {xn} is bounded above if there is a real number b such that xn≤b for all n, bounded below, if there is a real number a such that xn≥a for all n, or bounded, if there is a real number r such that |xn|≤r (-r≤xn≤r) for all n Monotonic Sequences. Definition: A sequence {xn} is increasing, if xn<xn+1 ; non-decreasing, if xn≤xn+1 ; decreasing, if xn+1<xn; non-increasing, if xn+1≤xn. Theorem. If a sequence {xn} is monotonic and bounded then it is convergent. Cauch’s Convergence Criterion. A sequence {xn} converges inӀRn if and only if for every ε>0 there is nεͼN, for every n>nε,for every pͼN => |xn+p-xn|<ε. Theorem. Let 1. 2. 3. 4. 5. Definition. The numbers Ṡ and S are called the limit superior and limit inferior respectively of {Sn} and denoted by Ṡ= Theorem. If {an} is a sequence of real number, then
|
|||||||||||||||||||
Последнее изменение этой страницы: 2016-08-26; просмотров: 374; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.143.246.80 (0.008 с.) |