Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Heine-borel Theorem. Bolzano-Weierstrass Theorem.Содержание книги
Поиск на нашем сайте
Answer: If H is an open covering of a closed and bounded subset S of the real line, then S has an open covering H consisting of finitely many open sets belonging to H. Proof: Since S bounded, it has an infimumα and supremum β, and, since S is closed,α and β belong to S. Define St=S [α;t] for ≥α. and let F={t|α<t<β and finitely many sets form H cover St} Since Sβ =S1 the theorem will be proved, if we can show that β F. To do this, we use the completeness of the reals. Since α S, Sαis the singleton set {α}, which is contained in some open set Hαform H, because H covers S; therefore, αcF. Since, F is nonempty and bounded above by β, it has supremumλ. First, we wish to show that λ=β by definition of F, it suffices to rull out the possibility that α<β. We consider two cases: Case 1. Suppose that α<β and λ S. Then, since S is closed λ is not a limitpointof S. Consequently, there is an ε>0 such that [λ-ε, λ+ε] S= , so Sλ-ε=Sλ+ε However, the definition of λ implies that Sλ-ε has a finite subcovering from H, while Sλ+εdoes not. This is a contradiction. 3.2 Case 2. Suppose that λ<β and λ S. Then there is an open set Hλ in H that contains λ and along with λ, an interval [λ-ε, λ+ε] for some positive ε. Since Sλ-ε has a finite covering.{H1,…,Hn} of sets from H, it follows, that Sλ+ε has the finite covering{H1,….,Hn,Hλ}. This contradicts the definition of λ. Now we know that α=β, which is in S. Therefore, there is an open set Hβ in H that contains β and along with, an interval of the from [β-ε,β+ε], for some positive ε. Since Sβ-ε is covered by a finite collection of set {H1,…,Hk}, Sp is covered by the finite collection {H1,…,Hk,Hβ}. Since Sβ=S1. Henceforth, we will say a closed and bounded set is compact. As an application of the Heine-Borel theorem, we prove the following theorem of Bolzano andWeierstrass. Bolzano-Weierstrass theorem. Every boumded infinite set of real numbers has at least one limit point. Proof: We will show that a bounded nonempty set without a limit point can contain only a finite number of points. If S has no limitpoints,then S is closed and every point x of S has an open neighborhood Nx that contains no point of other than x. The collection H={Nx| x S} is an open covering for S. Since S is also bounded Heine-Borel theorem implies that S can be covered by a finite collection of sets from H1,…. say Nx1,…,Nxn. Since these set contain only x1,x2,…xn from S, it follows that S={x1,…,xn}
Sequences of real numbers. Monotonic Sequences. Answer: We denote a sequence by {xn}oon=1. The real number xn is the n -th term of the sequence. Definition. A sequence {xn} converges to a limit a if for every ε>0 there is an integer nε such that |xn-a|<ε, if n>nε In this case we say that {xn} is convergent and we write n=a. A sequence that does not converge diverges or is divergent. Theorem. The limit of a convergent sequence is unique. Proof: Suppose that n=a and n=b. We must show that a=b. Let ε>0. From definition of limits, there are integers N1 and N2 such that |xn-a|<ε if n>N1 (because n=a); |xn-b|<ε if n>N2 (because n=b) This inequelities both hold, if n>N=max(N1, N2) which implies that |a-b|=|a-xn+xn-b|≤|a-xn|+|xn-b|=ε+ε=2ε Since, this inequality holds for every ε>0 and |a-b|=0; that is a=b We say that n= , if for any real number a xn>a for large n Definition. A sequence {xn} is bounded above if there is a real number b such that xn≤b for all n, bounded below, if there is a real number a such that xn≥a for all n, or bounded, if there is a real number r such that |xn|≤r (-r≤xn≤r) for all n
Monotonic Sequences. Definition: A sequence {xn} is increasing, if xn<xn+1 ; non-decreasing, if xn≤xn+1 ; decreasing, if xn+1<xn; non-increasing, if xn+1≤xn. Theorem. If a sequence {xn} is monotonic and bounded then it is convergent. Cauch’s Convergence Criterion. A sequence {xn} converges inӀRn if and only if for every ε>0 there is nεͼN, for every n>nε,for every pͼN => |xn+p-xn|<ε. Theorem. Let n=S and n=t where S and t are finite. Then: 1. n=cS, c is constant. 2. =S+t, (the limit of is the sum of the limits) 3. n=S-t, 4. =St, 5. = (if tn is non-zero for all n and t 0),(the limit of quotient is the quotient of the limits, provided t 0) Definition. The numbers Ṡ and S are called the limit superior and limit inferior respectively of {Sn} and denoted by Ṡ= n and S = n Theorem. If {an} is a sequence of real number, then n=b if and only if | n= n=b
|
|||||
Последнее изменение этой страницы: 2016-08-26; просмотров: 354; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.118.140.96 (0.009 с.) |