МОЛЕКУЛЯРНАЯ БИОЛОГИЯ, ЕЕ РОЛЬ В СОВРЕМЕННОЙ НАУКЕ.



Мы поможем в написании ваших работ!


Мы поможем в написании ваших работ!



Мы поможем в написании ваших работ!


ЗНАЕТЕ ЛИ ВЫ?

МОЛЕКУЛЯРНАЯ БИОЛОГИЯ, ЕЕ РОЛЬ В СОВРЕМЕННОЙ НАУКЕ.



Прогресс в области изучения макромолекул до второй половины нашего века был сравнительно медленным, но благодаря технике физических методов анализа, скорость его резко возросла.

У. Астбери ввел в науку термин «молекулярная биология» и провел основополагающие исследования белков и ДНК. Хотя в 40-е годы почти повсеместно господствовало мнение, что гены представляют собой особый тип белковых молекул, в 1944 году О. Эвери, К. Маклеод и М. Маккарти показали, что генетические функции в клетке выполняет не белок, а ДНК. Установление генетической роли нуклеиновых кислот имело решающее значение для дальнейшего развития молекулярной биологии, причем было показано, что эта роль принадлежит не только ДНК, но и РНК (рибо-нуклеиновой кислоте).

Расшифровку молекулы ДНК произвели в 1953 г. Ф. Крик (Англия) и Д. Уотсон (США). Уотсону и Крику удалось построить модель молекулы ДНК, напоминающую двойную спираль.

Наряду с изучением нуклеиновых кислот и процессом синтеза белка в мо-лекулярной биологии большое значение с самого начала имели исследования структуры и свойств самих белков. Параллельно с расшифровкой аминокис-лотного состава белков проводились исследования их пространственной структуры. Среди важнейших достижений этого направления следует назвать теорию спирали, разработанную в 1951 г. Э. Полингом и Р. Кори. Согласно этой теории, полипептидная цепь белка не является плоской, а свернута в спираль, характеристики которой были также определены.

Несмотря на молодость молекулярной биологии, успехи, достигнутые ею в этой области, ошеломляющи. За сравнительно короткий срок были установле-ны природа гена и основные принципы его организации, воспроизведения и функционирования. Полностью расшифрован генетический код, выявлены и исследованы механизмы и главные пути образования белка в клетке. Полно-стью определена первичная структура многих транспортных РНК. Установле-ны основные принципы организации разных субклеточных частиц, многих вирусов и разгаданы пути их биогенеза в клетке.

Другое направление молекулярной генетики — исследование мутации ге-нов. Современный уровень знаний позволяет не только понять эти тонкие процессы, но и использовать их в своих целях. Разрабатываются методы ген-ной инженерии, позволяющие внедрить в клетку желаемую генетическую информацию. В 70-е годы появились методы выделения в чистом виде фрагментов ДНК с помощью электрофореза.

Клонирование органов и тканей — это задача номер один в области транс-плантологии, травматологии и других областях медицины и биологии. При пе-ресадке клонированного органа не надо думать о подавлении реакции оттор-жения и возможных последствиях в виде рака, развившегося на фоне иммунодефицита. Клонированные органы станут спасением для людей, по-павших в автомобильные аварии или какие-нибудь иные катастрофы, или для людей, которым нужна радикальная помощь из-за заболеваний пожилого возраста (изношенное сердце, больная печень и т. д.).

Самый наглядный эффект клонирования - дать возможность бездетным людям иметь своих собственных детей. Миллионы семейных пар во всем мире страдают, будучи обреченными оставаться без потомков.

Описание генома человека ученым удалось получить значительно раньше планировавшихся сроков (2005-2010 гг.). Уже в канун нового, XXI в. были достигнуты сенсационные результаты в деле реализации указанного проекта. Оказалось, что в геноме человека — от 30 до 40 тысяч генов (вместо предпо-лагавшихся ранее 80-100 тыс.). Это ненамного больше, чем у червяка (19 тыс. генов) или мухи-дрозофилы (13,5 тыс.).

Расшифровка генома человека дала огромную, качественно новую научную информацию для фармацевтической промышленности. Вместе с тем оказалось, что использовать это научное богатство фармацевтической индустрии сегодня не по силам. Нужны новые технологии, которые появятся, как предполагается, в ближайшие 10-15 лет. Именно тогда станут реальностью лекарства, поступающие непосредственно к больному органу, минуя все побочные эффекты. Выйдет на качественно новый уровень трансплантология, получит развитие клеточная и генная терапия, радикально изменится медицинская диагностика и т. д.

42. СИНЕРГЕТИКА КАК КОНЦЕПЦИЯ САМООРГАНИЗАЦИИ СЛОЖНЫХ СИСТЕМ.

Появление синергетики в современном ест-ии, очевидно, инициировано, подготовкой глобального эволюционного синтеза всех естественно-научных дисциплин. Для сохранения непротиворечивости общей картины мира необ-ходимо постулировать наличие у материи в целом не только разрушительной, но и создательной тенденции. Материя способна осуществлять работу и против термодинамического равновесия, самооорганизовываться и самоусложняться. Стоит отметить, что постулат о способности материи к саморазвитию в философию был введен достаточно давно. А вот его необходимость в фундаментальных естественных науках (физике, химии) начинает осознаваться только сейчас. На волне этих проблем возникла синергетика - теория самоорганизации. Ее разработка началась несколько десятилетий назад, и в настоящее время развивается по нескольким направлениям: синергетика (Г.Хакен), неравновесная термодинамика (И.Пригожин) и др.

Главный мировоззренческий сдвиг, произведенный синергетикой, можно выразить следующим образом: а) процессы разрушения и созидания, деграда-ции и эволюции во Вселенной по меньшей мере равноправны; б) процессы созидания (нарастания сложности и упорядоченности) имеют единый алго-ритм независимо от природы систем, в которых они осуществляются. Т.о. синергетика претендует на открытие некоего универсального механизма, с помощью которого осуществляется самоорганизация как в живой, так и в неживой природе. Под самоорганизацией при этом понимается спонтанный переход открытой неравновесной системы от менее к более сложным и упорядоченным формам организации. Отсюда следует, что объектом синергетики могут быть отнюдь не любые системы, а только те, которые удовлетворяют по меньшей мере двум условиям: 1) они должны быть открытыми, т.е. обмениваться веществом или энергией с внешней средой; 2) они должны также быть существенно неравновесными, т.е. находиться в состоянии, далеком от термодинамического равновесия.

Синергетика родом из физических дисциплин - термодинамики, радиофизики. Но ее идеи носят междисциплинарный характер. Они подводят базу под совершающийся в естествознании глобальный эволюционный синтез. Поэтому в синергетике видят одну из важнейших составляющих современной научной картины мира

Сущность ситемного метода

роль системного метода заключается в том, что с его помощью достигается наиболее полное выражение единства научного знания. Это единство проявляется, с одной стороны, во взаимосвязи различных научных дисциплин, которая выражается в возникновении новых дисциплин на "стыке" старых (физическая химия, химическая физика, биофизика, биохимия, биогеохимия и другие), в появлении междисциплинарных направлений исследования (кибернетика, синергетика, экологические программы и т. п.). С другой стороны, системный подход дает возможность выявить единство и взаимосвязь в рамках отдельных научных дисциплин. Как уже отмечалось выше, свойства и закономерности реальных систем в природе находят свое отображение прежде всего в научных теориях отдельных дисциплин естествознания. Эти теории в свою очередь связываются друг с другом в рамках соответствующих дисциплин, а последние как раз и составляют естествознание как учение о природе в целом. Итак, единство, которое выявляется при системном подходе к науке, заключается, прежде всего, в установлении связей и отношений между самыми различными по сложности организации, уровню познания и целостности охвата концептуальными системами, с помощью' которых как раз и отображаются рост и развитие нашего знания о природе. Чем обширнее рассматриваемая система, чем сложнее она по уровню познания и иерархической организации, тем больший круг явлений она в состоянии объяснить. Таким образом, единство знания находится в прямой зависимости от его системности.

С позиций системности, единства и целостности научного знания становится возможным правильно подойти к решению таких проблем, как редукция, или сведение, одних теорий естествознания к другим, синтез, или объединение кажущихся далекими друг от друга теорий, их подтверждение и опровержение данными наблюдений и экспериментов. Широкое распространение идей и принципов системного метода способствовало выдвижению ряда новых проблем мировоззренческого характера. Более того, некоторые западные лидеры системного подхода стали рассматривать его в качестве новой научной философии, которая в отличие от господствовавшей раньше философии позитивизма, подчеркивавшей приоритет анализа и редукции, главный упор делают насинтез и антиредукционизм. В связи с этим особую актуальность приобретает старая философская проблема о соотношении части и целого.

 



Последнее изменение этой страницы: 2016-08-16; просмотров: 965; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 52.205.167.104 (0.008 с.)