Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Вопрос № 6. Зависимость с-в в-в от хар-ра хим связей в них. Термическая устойчивость в-в, их реакционная способность, склонность к электролитической диссоциации.

Поиск

Химическая связь – явление взаимодействия атомов, обусловленное перекрыванием электронных облаков связывающихся частиц, которое сопровождается уменьшением полной энергии с-мы.

В зависимости от характера распределения электронной плотности в веществе различают три основных типа химической связи: ковалентную, ионную и металлическую. Однако в «чистом» виде перечисленные типы связи проявляются редко. В большинстве соединений имеет место наложение разных типов связи.

Ионная связь. В 1916 г. нем уч В.Косселем была высказана идея о том, что атомы при взаимодействии либо отдают, либо принимают электроны, превращаясь при этом соответственно в катионы или анионы, умеющие устойчивые электронные конфигурации. Взаимное их электростатическое притяжение обуславливает химическую связь, называемую ионной. Согласно этой теории, в решетке ионного кристалла происходит не только притяжение м-у разноименными ионами,но и отталкивание одноименных ионов. В этих условиях устойчивость подобных кристаллов объясняется тем, что рас-я м-у разноименными ионами меньше, чем м-у одноименными. Поэтому кулоновкие силы притяжения превалируют над силами оттналкивания, что и обеспечивает хим связь.

Природу ионной связи, структуру и свойства ионных соединений можно объяснить электростатическим взаимодействием ионов. Способность элементов образовывать простые ионы обусловлена электронной структурой их атомов. Эту способность можно оценить величиной энергии ионизации и сродства атомов к электрону. Легче всего образуют катионы элементы с малой энергией ионизации — щелочные и щелочно-земельные металлы. Образование же в условиях обычных химических превращений простых катионов других элементов менее вероятно, так как это связано с затратой большой энергии на ионизацию атомов.

Простые анионы легче всего образуют р-элементы VII группы вследствие их высокого сродства к электрону. Присоединение одного электрона к атомам кислорода, серы, углерода, некоторым другим элементам сопровождается выделением энергии. Присоединение же последующих электронов с образованием свободных многозарядных простых анионов места не имеет. Поэтому соединения, состоящие из простых ионов, немногочисленны. Они легче всего образуются при взаимодействии щелочных и щелочно-земельных металлов с галогенами. Однако и в этом случае электронная плотность между ионами не равна нулю, и поэтому можно говорить лишь о преимущественном проявлении ионной связи. (Радиусы одноатомных многозарядных ионов представляют собой условные величины.)

Электрические заряды ионов обусловливают их притяжение и отталкивание и в целом определяют стехиометрический состав соединения. Ионы можно представить как заряженные шары, силовые поля которых равномерно распределяются во всех направлениях в пространстве. Поэтому каждый ион может притягивать к себе ионы противоположного знака в любом направлении. Иначе говоря, ионная связь в отличие от ковалентной характеризуется ненаправленностью.

Понятно, что взаимодействие друг с другом двух ионов противоположного знака не может привести к полной взаимной компенсации их силовых полей. В силу этого у них сохраняется способность притягивать ионы противоположного знака и по другим направлениям. Следовательно, в отличие от ковалентной ионная связь характеризуется также ненасыщаемостью.

Ковалентная связь. В том же году ам уч Г. Льюис предложил, что устойчивые внешние электронные конфигурации у м-л могут возникнуть в р-те обобществления электронов. Связь, образованная путем обобществления пары электронов, поставляемых по одному от каждого атома. Получила название ковалентной.

Под насыщаемостью понимают способноть атомов образовывать ограниченное число ковалентных связей. Это связано с тем, что одна орбилать атома может принимать участие в образовании только одной ковалентной хим связи. Однако и при насыщенных ковал связях могут образовываться более сложные м-лы по донорно-акцепторному миханизму.

Направленность – св-во, определяющее геометрическую структуру м-лы. Причина направленности заключается в том, что перекрывание электронных орбиталей возможно только при их определенной взаимной ориентации, обеспечивающей наибольшую электронную плотность в области перекрывания. В этом случае образуется наиболее прочная хим связь.

Металлическая связь. В кристалле металла число электронов значительно меньше числа орбиталей. Поэтому электроны могут переходить из одной орбитали в другую. Тем самым электроны принимают участие в образовании связи между всеми атомами кристалла металла. К тому же атомы металлов характеризуются невысокой энергией ионизации — валентные электроны слабо удерживаются в атоме, т. е. легко перемещаются по всему кристаллу. Возможность перемещения электронов по кристаллу определяет также электрическую проводимость металла.

Т.о., в отличие от ковалентных и ионных соединений в металлах небольшое число электронов одновременно связывает большое число атомных ядер, а сами электроны могут перемещаться в металле. Иначе говоря, в металлах имеет место сильно делокализованная химическая связь, так называемая металлической связи. Согласно одной из теорий металл можно рассматривать как плотно упакованую структуру из положительно заряженных ионов, связанных друг с другом коллективизированными электронами (электронным газом).

Стоит отметить, что образуя хим связь атомы стремятся к созданию октета – внешней восьмиэлектронной оболочки.

Энергией связи называют ту величину, к-ую необходимо затратить для ее разрыва. При этом м-ла находится в невозбужденном состоянии. Эта величина определяет прочность связи. Чем больше энергия, затрачиваемая на разрыв связи, тем прочнее связь. Чем больше длина, тем меньше прочность.

Длиной связи наз среднее рас-е м-у ядрами, отвечающее минимуму энергии связи. На длину связи влияет ее кратность, к-ая определяется числом электронных пар, связывающих два атома. С увеличением кратности связей происходит их упрочнение, межъядерные силы уменьшаются.

 

Вопрос № 7. Межмолекулярное взаимодействие (силы Ван–дер-Ваальса). Водородная связь, ее природа и колич хар – ки. Меж- и внутримолекулярная водородная связь.

В 1873 г. голланд уч И. Ван-дер-Ваальс предположил, что существуют силы, обусловливающие притяжение м-у м-лами. Эти силы позднее получили название ваандервальсовых сил. Они включают в себя три составляющие: диполь-дипольное, индукционное и дисперстное взаимодействия.

Диполь-дипольное взаимодействие. При сближении полярных молекул они ориентируются таким образом, чтобы положительная сторона одного диполя была ориентирована к отрицательной стороне другогодиполя.

Возникающее между диполями взаимодействие называется диполь-дипольным или ориентационным. Энергия диполь-дипольного взаимодействия пропорциональна электрическому моменту диполя в 4-ой степени и обратно пропорциональна расстоянию между центрами диполей в шестой степени и абсолютной температуре в первой степени.

Индукционное взаимодействие. Диполи могут воздействовать на неполярные молекулы, превращая их в индуцированные (наведенные) диполи. Между постоянными и наведенными диполями возникает притяжение, энергия которого пропорциональна электрическому моменту диполя во второй степени и обратно пропорциональна расстоянию между центрами молекул в шестой степени. Энергия индукционного взаимодействия возрастает с увеличением поляризуемости молекул, т.е. способности молекулы к образованию диполя под воздействием электрического поля. Величину поляризуемости выражают в единицах объема. Поляризуемость в однотипных молекулах растет с увеличением размера молекул. Энергия индукционного взаимодействия значительно меньше энергии диполь-дипольного взаимодействия.

Дисперсионное притяжение. В любой молекуле возникают флуктуации электрической плотности, в результате чего появляются мгновенные диполи, которые в свою очередь индуцируют мгновенные диполи у соседних молекул. Движение мгновенных диполей становится согласованным, их появление и распад происходит синхронно. В результате взаимодействия мгновенных диполей энергия системы понижается. Энергия дисперсионного взаимодействия пропорциональна поляризуемости молекул и обратно пропорциональна расстоянию между центрами частиц. Для неполярных молекул дисперсионное взаимодействие является единственной составляющей вандерваальсовых сил.

Энергия вандерваальсова взаимодействия. всех видов вандерва­аль­сова взаимодействия обратно пропорциональна расстоянию между

центрами молекул в шестой степени. При сильном сближении молекул проявляются силы отталкивания между ними, которые обратно пропорциональны расстоянию между молекулами в двенадцатой степени. Поэтому зависимость результирующей энергии вандерваальсова взаимодействия Ев от рас-

стояния между молекулами, l в, выражается уравнением: Ев = -(а / l в6) + (b / l в12), где а и b — постоянные.

Минимальная энергия системы обеспечивается при расстояниях между центрами молекул 0,4 ¸ 0,5 нм, т.е. существенно больше длины химической связи.

С увеличением размера молекул в ряду растет их поляризуемость и энергия дисперсион-

ного притяжения. Ориентационное взаимодействие вносит значительный вклад в вандерваальеовы силы лишь в случае молекул с большим электрическим моментом диполя. С увеличением суммарной энергии межмолякулярного взаимодействия возрастет температура кипения жидкостей, а также теплота их испарения.

Суммарная энергия вандерваальсового взаимодействия молекул на 1—2 порядка ниже энергии химических связей.

Химическая связь, образованная попожительно поляризованным водородом молекулы А-Н (или полярной группы—А-Н) и электроотрицательным атомом В другой или той жемолекулы, называется водородной связью. Если водородная связь образуется между разными молекулами, она называется межмолекулярной, если связь образуется между двумя группами одной и той же молекулы, то она называется внутримолекулярной.

Водородная связь между молекулами А-Н и В-R. обозначается тремя точками:

А – H + B – R → A – H … B – R водород в данном случае образует две химические связи, причем они не равноценны.

Образование водородной связи обусловлено тем, что в полярных молекулах А-Н или полярных группах -А-Н поляризованный атом водорода обладает уникальными свойствами: отсутствием внутренних электронных оболочек, значительным сдвигом электронной пары к атому с высокой электроотрицательностью и очень малым размером. Поэтому водород способен глубоко внедряться в электронную оболочку соседнего отрицательно поляризованного атома.

Атомы А и В могут быть одинаковыми, как при взаимодействии НF:

Fδ- - H δ+ + Fδ- - H δ+→ F – H … F – H, но могут быть и разными, как при взаимодействии воды и фтороводорода:

 

 
 

 

Энергия и длина водородной связи. Энергия водородной связи возрастает с увеличением электроотрицательности (ЭО) и уменьшением размеров атомов В. Поэтому наиболее прочные водородные связи возникают, когда в качестве атомов В выступают F, О или N.

Энергия связи (кДж/моль) возрастает в ряду:

 

 

Несмотря на высокую ЭО у хлора, водородная связь – Н … С1 - носительно слабая из-за большого размера атома хлора.

Как видно, энергия водородной связи имеет промежуточное значение между энергией ковалентной связи и вандерваальсовых сил. Также промежуточные значения имеют длины водородных связей.

Так, в полимере (НF)n

 

длина связи F-Н = 0,092 нм, а связи F … Н — 0,14 нм. У воды длина связи O – H — 0,096 нм, а связи О … Н — 0,177 нм.

Влияние водородных связей на свойства веществ. При возникновении водородных связей образуются димеры, тримеры или полимерные структуры.

Соответственно в жидком состоянии молекулы вступающие в водородные связи, ассоциированы, а в твердом состоянии образуют сложные кристаллические структуры.

Образование межмолекулярных водородных связей приводит к существенному изменению свойств веществ: повышению вязкости, диэлектрической постоянной, температур кипения и плавления, теплот плавления и парообразования.

Внутримолекулярные водородные связи. Водородная связь может также возникнуть между атомами водорода и отрицательным атомами полярных групп в одной и той же молекуле.

Молекулы с внутримолекулярными водородными связями не могут вступать в межмолекулярные водородные связи. Поэтому вещества с такими связями не образуют ассоциатов, более летучи, имеют более низкие вязкости, температуры кипения и плавления, чем их изомеры, способные образовать межмолекулярную связь.

Значение водородных связей. Так как многие соединения содержат ковалентные полярные связи Н-0 и Н-N, то водородные связи очень распространены. Они проявляются не только в воде, но и в различных кристаллических веществах, полимерах, белках, живых организмах.

Важную роль водородные связи играют в белках, у которых спиральные полимерные структуры объединяются связями N-Н…0. Двойные спирали нуклеиновых кислот соединяются межмолекулярными водородными связями N-H…N и N-H…О.

 

 



Поделиться:


Последнее изменение этой страницы: 2016-08-16; просмотров: 243; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.188.132.71 (0.009 с.)