Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Измерение нормируемой величины теплового облучения.Содержание книги
Поиск на нашем сайте
Поток тепла, обусловленный инфракрасным излучением, является векторной величиной. Соответственно, датчики, применяемые в измерительных приборах, могут быть либо направленного действия, либо изотропные. Практически все приборы, использующиеся в отечественной практике санитарно-гигиенического контроля, представляют собой ИК-радиометры с ограниченным углом зрения. Эти приборы с датчиками направленного действия можно использовать для измерения потоков теплового излучения от источников с небольшими угловыми размерами, полностью попадающих в поле зрения радиометра. Задача существенно усложняется в случае источника больших размеров, или если источников несколько и облучение происходит с нескольких направлений. В нормативных документах [4] и [5] дана рекомендация измерять тепловое излучение в нескольких направлениях («от каждого источника, располагая приемник прибора перпендикулярно падающему потоку»), однако умалчивается, что обработка результатов измерения представляет собой нетривиальную задачу, не всегда имеющую корректное решение [8]. Задача практически не решаема для нестационарных (например, движущихся) источников. Наиболее подходящим прибором с изотропной чувствительностью, для измерения интегрального (всесторннего) теплового облучения, представляется шаровой термометр. Очевидно, что необходим соответствующий алгоритм пересчета результатов измерения температуры в интегральное тепловое облучение. В основе такого пересчета лежит уравнение (5) баланса тепловых потоков для сферы J1= ε * σ * Т4g + hg* (Tg- Ta) (15) здесь введено обозначение J1 = εσ Т4r для потока падающего на сферу ИК-излучения. Нагрев или охлаждение организма за счет теплового облучения определяется разностью между падающим излучением и собственным излучением с поверхности одежды J2 = εσ Т4c. В этом определении через Tc обозначена температура (абсолютная) поверхности одежды (эта же температура в градусах Цельсия: tc). Разница ΔJ = J1 - J2 определяет скорость нагрева организма за счет ИК-излучения. В [8] эта величина названа биологически эффективным тепловым облучением. После несложных преобразований величину ΔJ можно определить через температуры одежды, воздуха и показания шарового термометра формулой: ΔJ = ε * σ * (Т4g- Т4c) + hg* (Tg- Ta) (16) Эту величину и следует сравнивать с нормами при определении классов условий труда. Соотношение (16) определяет тепловое воздействие ИК-излучения через хорошо измеряемые температуры сферы Тg и воздуха Та, однако в него входит и температура поверхности одежды Тс измерение которой гораздо сложнее: ее необходимо измерять в нескольких точках с последующим усреднением результатов. Несколько теряя в точности, можно заменить температуру Тс в (16) на температуру воздуха Та. Это, по-видимому, приведет к некоторому изменению нормируемых значений теплового облучения, что, однако, приведет к существенному упрощению процедуры контроля параметров микроклимата. Подбор одежды как средства индивидуальной защиты от неблагоприятного воздействия метеопараметров. Обоснованные рекомендации по выбору одежды, обеспечивающей комфортную работу в реально существующих производственных условиях, являются важным моментом санитарно-гигиенического исследований при АРМ и производственном контроле. Фактически, за счет правильного выбора одежды можно существенно улучшить условия труда и снизить профессиональные риски, не меняя производственную среду. Для этого, однако, рекомендации должны быть убедительно обоснованы результатами расчетов теплообмена организма с окружающей средой. В зависимости от целей таких расчетов (требования к параметрам микроклимата, ограничения на энерготраты, расчет термосопротивления одежды и т.п.) должны выбираться алгоритм и последовательность анализа отдельных каналов теплообмена. В рамках темы настоящего обсуждения может представить интерес то обстоятельство, что использование шарового термометра существенно упрощает и уточняет расчет термосопротивления одежды, обеспечивающей индивидуальную защиту от неблагоприятного воздействия микроклиматических условий. Для того, чтобы показать это, следует уточнить ту простейшую модель теплообмена организма со средой, которая была описана выше в разд.2. Если изначально задаваться полными энергозатратами Wпол , для расчетов теплообмена из них следует вычесть механическую мощность Wмех , теплопотери на испарение пота Wпот , и теплопотери при дыхании Wлег . Оставшаяся мощность Wh = Wпол - Wпот - Wлег должна быть отведена через одежду. Соответствующий поток тепла J задается формулами: J = Wh/ S = (ts- tc) / Iclo (17) здесь Iclo – термосопротивление одежды, остальные переменные описаны выше. Исследования по физиологии терморегуляции [9] показывают, что для каждого уровня энергозатрат существует физиологически обусловленная оптимальная температура кожи ts, так что, если определить и температуру поверхности одежды tс, то из уравнения (17) можно определить величину термосопротивления одежды Iclo, обеспечивающей оптимальные условия работы с заданными полными энергозатратами Wпол . Для определения tс следует решить уравнение теплообмена с учетом кондуктивного и радиационного каналов теплообмена на поверхности одежды: J = hс* (Tс- Ta) ε * σ * (Т4c- Т4r) (18)
В этом соотношении опять появляется радиационная температура теплового излучения Tr, которую можно определить с помощью шарового термометра. Объединяя уравнения (5), (17) и (18) в систему и исключая из нее J и Tr, получим уравнение ε * σ * Т4c+ hc * Tс= ε * σ * Т4g+ hg* Tg + Wh/ S + (hc- hg) * Ta (19) решая которое определяем температуру Tc поверхности одежды, после чего из (17) определяется Iclo. Коэффициент теплоотдачи hg с поверхности сферы Вернона определяется как конструкцией сферы (ее диаметром), так и метеопараметрами (скоростью движения воздуха, его температурой и пр.). Существует возможность подобрать такую сферу, у которой этот коэффициент будет равен коэффициенту теплоотдачи hс с поверхности одежды. В этом случае в уравнение для определения температуры поверхности одежды Tc температура воздуха Tа не входит – для определения Tc достаточно показаний шарового термометра. Это существенно упрощает расчеты термосопротивления одежды, обеспечивающей комфортные условия работы. В любом случае, использование одежды с правильно рассчитанным термосопротивлением представляет собой пример эффективного подбора средства индивидуальной защиты от неблагоприятного воздействия микроклиматических условий. Пример конкретных расчетов, демонстрирующих насколько таким способом можно улучшить условия труда, приведен в работе [10], где показано, что вполне реально понижение класса вредности на 2-3 балла. Заключение. Проведенный обзор возможностей использования шарового термометра свидетельствует о том, что это полезный и удобный прибор для проведения исследований воздействия микроклиматических условий на человека. Представляется целесообразным узаконить методику его применения в этих целях. Дополнительным аргументом в пользу такого решения является то обстоятельство, что в зарубежной практике эргономических исследований тепловой обстановки шаровой термометр используется наравне с обычными термометрами, анемометрами и измерителями влажности воздуха. Принцип действия [править] Принцип действия основан на взаимодействии поля постоянных магнитов компаса с горизонтальной составляющей магнитного поля Земли. Свободно вращающаяся магнитная стрелка поворачивается вокруг оси, располагаясь вдоль силовых линиймагнитного поля. Таким образом, стрелка всегда параллельна направлению линии магнитного поля. Электромагнитный компас [править] Электромагнитный компас является «развёрнутым» электрогенератором, в котором магнитное поле Земли играет роль статора, а одна или несколько рамок с обмотками — ротора. Соотношение напряжений, наводимых в обмотках при движении в магнитном поле, показывает курс, либо одна обмотка устанавливается под заранее заданным углом к продольной оси самолёта или корабля, и для поддержания курса пилоту или рулевому следует рулём направления удерживать стрелку на нуле. Преимущество электромагнитного компаса перед обычным магнитным — в отсутствиидевиации от ферромагнитных деталей транспортного средства, так как они неподвижны относительно обмоток и не наводят в них токов. Для работы простого варианта электромагнитного компаса с индикатором в виде гальванометра требуется быстрое движение, поэтому первое применение электромагнитный компас нашёл в авиации. Был использован Чарльзом Линдбергом при перелёте через Атлантику в 1927 году. См. Earth Inductor Compass Гирокомпас [править] Основная статья: Гирокомпас Гирокомпас — прибор, указывающий направление на земной поверхности; в его состав входит один или несколько гироскопов. Используется почти повсеместно в системах навигации и управления крупных морских судов; в отличие от магнитного компаса его показания связаны с направлением на истинный географический (а не магнитный) Северный полюс. Обычно гирокомпас применяется как опорное навигационное устройство в судовых рулевых системах с ручным или автоматическим управлением, а также при решении различных задач иного рода, например, для определения точного направления при наводке орудия боевого корабля. Морской гирокомпас, как правило, очень тяжел; в некоторых конструкциях вес гироскопического ротора превышает 25 кг. Для нормальной работы гирокомпаса необходимо устойчивое основание, не испытывающее ускорений и фиксированное относительно земной поверхности, причем скорость его перемещения должна быть пренебрежимо мала по сравнению со скоростью суточного вращения Земли на данной широте. История создания [править] Прототип современного гирокомпаса первым создал Герман Аншютц-Кэмпфе (запатентован в 1908), вскоре подобный прибор построил Э. Сперри (запатентован в 1911). В последующие годы разрабатывалось множество гирокомпасов различных модификаций, но наиболее удачные из них принципиально почти не отличались от устройств Аншютца и Сперри. Приборы современной конструкции значительно усовершенствованы по сравнению с первыми моделями; они отличаются высокой точностью и надежностью и удобнее в эксплуатации. Устройство [править] Простейший гирокомпас (не «гидро», так как гидрос — вода) состоит из гироскопа, подвешенного внутри полого шара, который плавает в жидкости; вес шара с гироскопом таков, что его центр тяжести располагается на оси шара в его нижней части, когда ось вращения гироскопа горизонтальна. Принцип действия [править] Предположим, что гирокомпас находится на экваторе, а ось вращения его гироскопа совпадает с направлением запад — восток; она сохраняет свою ориентацию в пространстве в отсутствие воздействия внешних сил. Но Земля вращается, совершая один оборот в сутки. Так как наблюдатель, находящийся рядом, вращается вместе с планетой, он видит, как восточный конец (E) оси гироскопа поднимается, а западный (W) опускается; при этом центр тяжести шара смещается к востоку и вверх (позиция б). Однако сила земного притяжения препятствует такому смещению центра тяжести, и в результате её воздействия ось гироскопа поворачивается так, чтобы совпасть с осью суточного вращения Земли, то есть с направлением север — юг (это вращательное движение оси гироскопа под действием внешней силы называется прецессией). Когда ось гироскопа совпадет с направлением север — юг (N — S, позиция в), центр тяжести окажется в нижнем положении на вертикали и причина прецессии исчезнет. Поставив метку «Север» (N) на то место шара, в которое упирается соответствующий конец оси гироскопа, и, соотнеся ей шкалу с нужными делениями, получают надежный компас. В реальном гирокомпасе предусмотрены компенсациядевиации компаса и поправка на широту места. Действие гирокомпаса зависит от вращения Земли и особенностей взаимодействия ротора гироскопа с его подвесом. Электронный компас [править] Электронный компас в системе навигации NAVSTAR Здесь рассматривается компас, построенный на принципе определения координат через спутниковые системы навигации. Существуют также компасы (так называемые цифровые), использующие в качестве датчика блок магниторезисторов или элементов Холла. Последние представляют собой микроэлектромеханические системы, способные определять своё относительное положение в магнитном поле Земли, в отличие от использующих спутниковый сигнал устройств, которые компасами в классическом смысле не являются, так как представляют собой лишь приборы с индикацией путевого угла в виде компаса. История создания [править] История создания электронного компаса тесно связана с системами спутниковой навигации.
Принцип действия [править] Принцип действия такого компаса весьма прост: 1. На основании сигналов со спутников определяются координаты приёмника системы спутниковой навигации (и, соответственно, объекта) 2. Засекается момент времени, в который было сделано определение координат. 3. Выжидается некоторый интервал времени. 4. Повторно определяется местоположение объекта. 5. На основании координат двух точек и размера временного интервала вычисляется вектор скорости движения и из него: · направление движения · скорость движения 6. Осуществляется переход к шагу 2. Ограничения: · Естественно, если объект не перемещается, направление движения узнать не получится. Исключение составляют достаточно большие объекты (например, самолёты), где есть возможность установить 2 приёмника (например, на концах крыльев). При этом координаты двух точек можно получить сразу, даже если объект неподвижен, и перейти к пункту 5. · Ещё одно ограничение обусловлено точностью определения координат спутниковыми системами позиционирования и влияет, главным образом, на тихоходные объекты (пешеходов). Старый корабельный компас. Ориентирование на местности [править] Определение направлений на стороны горизонта по компасу выполняется следующим образом. Мушку визирного устройства ставят на нулевое деление шкалы, а компас — в горизонтальное положение. Затем отпускают тормоз магнитной стрелки и поворачивают компас так, чтобы северный её конец совпал с нулевым отсчетом. После этого, не меняя положения компаса, визированием через целик и мушку замечают удаленный ориентир, который и используется для указания направления на север. Направления на стороны горизонта взаимосвязаны между собой, и, если известно хотя бы одно из них, можно определить остальные. В противоположном направлении по отношению к северу будет юг, справа — восток, а слева — запад. См. также
|
||||
Последнее изменение этой страницы: 2016-08-16; просмотров: 385; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.221.68.196 (0.008 с.) |