Диференціальні залежності при згинанні 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Диференціальні залежності при згинанні

Поиск

 

 

Виділимо малий елемент dx- це О1О2

 

q=dQ/dx

 

∑Y=0 Q+q∙dx-(Q+dQ)=0 è

 

 

∑Mo2=0 M+Q∙dx+(q∙dx∙dx)/2-(M+dM)=0

 

M +Q∙dx+q∙ (dx)2/2- M -dM=0

 

q∙ (dx)2/2=0 в силу его малости

 

 

Q=dM/dX
q=d2M/dx2

 



Побудова епюр при згині балок

 

∑МА=0 qa∙2a-q∙2a∙a-2qa2-RB∙2a=0

RB=-qa

∑МB=0 qa∙4a-q∙2a∙3a+RA∙2a-2qa2=0

RA=2qa

∑Yi=0 P-2qa+RA-RB=0

qa -2qa+2qa-qa=0

 

I 0 ≤ x ≤ 2a

Q(x)= qa-qx M(x)= Px-qx2/2=qa∙x-qx2/2

Q(0)=qa; Q(2a)=-qa M(0)=0 M(2a)=2qa2-2qa2=0

Q(x)=qa-qx=0 x=a M(a)= qa2-qa2/2=qa2/2

 

II 2a ≤ x ≤ 4a

Q(x)=qa-2qa+2qa=qa M(4a)=4qa2-6qa2+4qa2=2qa2

M(x)=qa∙x-2qa∙ (x-a)+2qa∙ (x-2a) M(2a)=2qa2-2qa2=0

 

Лекція №

Визначення нормальних напружень при згинанні

При прямому поперечному згинанні у поперечному перерізі балки виникають два внутрішніх зусилля Q та М; залежності між цим зусиллям та напруженнями у поперечному перерізі балки такі:

.

Отже, в поперечних перерізах балки при згинанні виникають як дотичні напруження так і нормальні напруження. Дотичні напруження при згинанні балок у переважній більшості випадків не враховуються. Особливі випадки коли величиною дотичних напружень знехтувати не можливо, тут не розглядаються.

Статична сторона задачі

Для виводу формул, що визначають нормальні напруження, які виникають в поперечному перерізі балки, розглянемо балку, що знаходиться в умовах чистого згину (рис. 6.13), тобто Q = 0 і дотичні напруження відсутні. Двома нескінченно близькими поперечними перерізами виділимо з цієї балки елемент довжиною dx (рис. 6.13,а).

Переріз балки прямокутник. В площині перерізу проведемо координатні осі (рис.6.13,б).

Приймаємо, що вісь збігається з силовою лінією (лінію перетину силової площини з площиною перерізу); вісь z проведемо перпендикулярно осі у; вісь х направлена перпендикулярно до площини перерізу. У перерізі виділимо елемент з площею dF (точка А), його координати – у, z. При чистому згинанні (Q =0, t = 0) на елемент діє зусилля dN = sdF. Тоді з шести інтегральних рівнянь можна використати три:

Але цих трьох рівнянь статики не достатньо для визначення s, тому що невідомий закон розподілу σ по перерізу та розташування осі Z.

Геометрична сторона задачі

Розглянемо картину деформацій цієї балки. Якщо на еластичну балку нанести сітку з ліній паралельних і перпендикулярних вісій, то при чистому згинанні прямокутна сітка деформується так що:

1) поздовжні лінії викривлюються по дузі кола;

2) поперечні лінії лишаються прямими і нахиляються одна до одної;

3) поперечні лінії з поздовжніми перетинаються під прямим кутом (рис. 6.13,в).

 
 

На основі такої картини можна вважати, що при чистому згині поперечні перерізи лишаються плоскими і повертаються, лишаючись перпендикулярними до осі балки, тобто при чистому згинанні справедлива гіпотеза плоских перерізів.

Можна вважати, що відстань а між поперечними перерізами змінюється а 1 < a, a 2 > a, а саме верхні волокна скорочуються, а нижні – витягуються. Очевидно, що серед них є такі волокна які не змінюють своєї довжини. Сукупність таких волокон називаеть нейтральним шаром (рис. 6.13). Лінія перетину нейтрального шару із площиною поперечного перерізу балки називається нейтральною лінією Будемо вважати вісь z нейтральною віссю. Беручи до уваги картину деформацій, зобразимо деформований стан елемента dx (рис. 6.14).

Виділимо елемент балки двома суміжними поперечними перерізами m – m та n – n, які розташовані один від одного на відстані dx.

 

Розглянемо тепер цей елемент після деформування:

 

 

 

Н.С.

- радіус кривизни.

 

 

 

Фізична сторона задачі.

На елементпрній площадці дотичних напружень немає. Волокна матеріалу не тиснуть одне на одне. Таким чином волокно a b перебуває в лінійному напруженому стані:

;

/ \

дотичних волокна не

напружень тиснуть одне

нема на одне

 

 

 

Синтез:

 

- закон Гука при згині; (добуток) – називається жорсткістю перерізу при згині

 

 

- формула Нав’є.

 

Формула Нав’є показує, що при згині нормальні напруження розподіляються за лінійним законом.

 

- Показує, що центр ваги лежить на осі Z.

- Показує, що вісі Z та y головні центральні. Тобто вісь Z нейтральна лінія перерізу проходить через центр ваги, а осі y та z – головні центральні осі перерізу.

Тобто вісь z – нейтральна лінія перелізу проходить через центр вала, а вісі у та z – головні центральні вісі перелізу. Формула Нав’є показує, що незалежно від формі та розмірів перерізу балки, напруження в точках нейтральної лінії завжди дорівнюють 0. Величина змінюється лінійно по товщині балки.

 
 

Максимальні напруження мають місце в найбільш віддалених від нейтральної лінії волокнах. У випадку симетричного перерізу:

 

 

- осьовий момент опору

де

осьові моменти опору

Якщо переріз балки не має горизонтальної осі симетрії, то нейтральна лінія зміщена відносно середини висоти перерізу, але знову

; де

 

 

Для простіших перерізів:

Прямокутник:

Wz = 2 Iz/h = bh3 2 /12h = bh2/ 6(6-5)

Wy = Iy 2 /b = hb2/ 6

 

 

Коло:

Wy = Wz = 2 Iocн/d = pd4/ 64 d = (6-6)

Кільце:

Wz = Wy = pD3 (1-a) = 0,1 D3 ( 1 -a), (6-7)

де a = d/D – відношення внутрішнього до зовнішнього діаметра кільця.

Для прямокутного перерізу

 

 

 

 

Для кругового

 

 

 

 

 

Для кільцевого

 

Для прокатних профілів значення Wz та Wy вказані у таблицях

 

Якщо переріз складний то визначаємо . Далі знаходимо потім .

Затрати матеріалу пропорційна площі поперечного перерізу F. Отже чим більше відношення W/F, тим більший згинальний момент витримує переріз заданою площею.

 

тобто переріз має бути розташованим так, щоб осьовий момент інерції був найбільший.

 

умова міцності для нормальних напружень:

Тепер можна записати умову міцності для нормальних напружень при згинанні:

smax = Mmax/Wz ≤ [s] (6-8)

Умова міцності при згинанні дозволяє виконувати три типи розрахунків: перевірочний, проектувальний та визначення допустимого навантаження. Значення [s] береться те ж, що і при розтяганні – стисканні; Мma x – у небезпечному перерізі за епюрою згинального моменту.

Якщо розглядаються балки з пластичного матеріалу, не має різниці для яких волокон записати умову міцності – стиснутих або розтягнених, для пластичних матеріалів [s+] = [s -].

 

 



Поделиться:


Последнее изменение этой страницы: 2016-08-15; просмотров: 435; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.226.187.60 (0.011 с.)