Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Векторная запись нелинейных систем.Содержание книги Поиск на нашем сайте
Пусть требуется решить систему уравнений (2.1) где — заданные, вообще говоря, нелинейные (среди них могут быть и линейные) вещественнозначные функции п вещественных переменных Обозначив , , данную систему (2.1) можно записать одним уравнением (2.1а) относительно векторной функции F векторного аргумента х. Таким образом, исходную задачу можно рассматривать как задачу о нулях нелинейного отображения В этой постановке она является прямым обобщением основной задачи предыдущей главы — задачи построения методов нахождения нулей одномерных нелинейных отображений. Фактически это та же задача, только в пространствах большей размерности. Поэтому можно как заново строить методы ее решения на основе разработанных выше подходов, так и осуществлять формальный перенос выведенных для скалярного случая расчетных формул. В любом случае следует позаботиться о правомочности тех или иных операций над векторными переменными и векторными функциями, а также о сходимости получаемых таким способом итерационных процессов. Часто теоремы сходимости для этих процессов являются тривиальными обобщениями соответствующих результатов, полученных для методов решения скалярных уравнений. Однако не все результаты и не все методы можно перенести со случая п = 1 на случай п ≥2. Например, здесь уже не будут работать методы дихотомии, поскольку множество векторов не упорядочено. В то же время, переход от n = 1 до n≥ 2 вносит в задачу нахождения нулей нелинейного отображения свою специфику, учет которой приводит к новым методам и к различным модификациям уже имеющихся. В частности, большая вариативность методов решения нелинейных систем связана с разнообразием способов, которыми можно решать линейные алгебраические задачи, возникающие при пошаговой линеаризации данной нелинейной вектор-функции F(x). МЕТОД НЬЮТОНА, ЕГО РЕАЛИЗАЦИИ И МОДИФИКАЦИИ
МЕТОД НЬЮТОНА Пусть () — некоторая последовательность невырожденных вещественных n x n-матриц. Тогда, очевидно, последовательность задач , k = 0,1,2,... имеет те же решения, что и исходное уравнение (2.1а), и для приближенного нахождения этих решений можно формально записать итерационный процесс , k = 0,1,2,... (3.1.1) имеющий вид метода простых итераций (4.2.1b) при . В случае - это действительно МПИ с линейной сходимостью последовательности () Если же различны при разных k, то формула (3.1.1) определяет большое семейство итерационных методов с матричными параметрами . Рассмотрим некоторые из методов этого семейства. Положим , где
— матрица Якоби вектор-функции F(x). Подставив это в (3.1.1), получаем явную формулу метода Ньютона , (3.1.2) обобщающего на многомерный случай скалярный метод Ньютона (5.14). Эту формулу, требующую обращения матриц на каждой итерации, можно переписать в неявном виде: . (3.1.3) Применение (3.1.3) предполагает при каждом k = 0,1,2,... решение линейной алгебраической системы относительно векторной поправки , а затем прибавление этой поправки к текущему приближению для получения следующего: . К решению таких линейных систем можно привлекать самые разные методы как прямые, так и итерационные в зависимости от размерности n решаемой задачи и специфики матриц Якоби (например, можно учитывать их симметричность, разреженность и т.п.). Сравнивая (3.1.3) с формальным разложением F(x) в ряд Тейлора , видим, что последовательность () в методе Ньютона получается в результате подмены при каждом k=0,1,2,... нелинейного уравнения F(x) = 0 или, что то же (при достаточной гладкости F(x)), уравнения линейным уравнением т. е. с пошаговой линеаризацией. Как следствие этого факта, можно рассчитывать, что при достаточной гладкости F(x) и достаточно хорошем начальном приближении сходимость порождаемой методом Ньютона последовательности () к решению будет квадратичной и в многомерном случае. Имеется ряд теорем, устанавливающих это при тех или иных предположениях. В частности, одна из таких теорем приводится ниже. Новым, по сравнению со скалярным случаем, фактором, осложняющим применение метода Ньютона к решению n-мерных систем, является необходимость решения n-мерных линейных задач на каждой итерации (обращения матриц в (3.1.2) или решения СЛАУ в (3.1.3)), вычислительные затраты на которые растут с ростом n, вообще говоря, непропорционально быстро. Уменьшение таких затрат — одно из направлений модификации метода Ньютона.
|
||||
Последнее изменение этой страницы: 2016-08-15; просмотров: 662; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.140.188.174 (0.007 с.) |