Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Круговые и переходные кривыеСодержание книги
Поиск на нашем сайте
Круговые кривые. Железнодорожные линии (также и автомобильные дороги) в плане состоят из прямолинейных участков, сопряжённых между собой кривыми. Наиболее простой и распространённой формой кривой является дуга окружности. Такие кривые носят название круговых кривых. На железных дорогах применяют круговые кривые со следующими радиусами: 4000, 3000, 2000, 1800, 1500, 1200, 1000, 800, 700, 600, 500, 400 и 300 м. Радиус кривой выбирают при проектировании дороги, руководствуясь конкретными техническими условиями. Главными точками кривой, определяющими её положение на местности, являются вершина угла ВУ, начало кривой НК, середина кривой СК и конец кривой КК (рис. 15.3).
Рис. 15.3 Схема круговой кривой
Основные элементы кривой – её радиус R и угол поворота a. К основным элементам относятся также: – тангенс кривой Т (или касательная) - отрезок прямой между вершиной угла и началом или концом кривой; – кривая К - длина кривой от начала кривой до её конца; – биссектриса кривой Б - отрезок от вершины угла до середины кривой; – домер Д - разность между длиной двух тангенсов и кривой. Во время изысканий угол a измеряют, а радиус R назначают. Остальные элементы вычисляют по формулам, вытекающим из прямоугольного треугольника с вершинами ВУ, НК, О (центр окружности): Т = R ×tg(a/2); К = R ×a = p R a°¤180°; Б = R [sec(a/2) - 1], (15.1) где a° - угол поворота в градусах. Домер вычисляют по формуле . (15.2) Вместо вычислений по формулам можно воспользоваться таблицами для разбивки кривых на железных дорогах, где по заданным радиусу и углу поворота сразу находят значения Т, К, Б и Д. В месте поворота трассы пикетаж ведётся по кривой. Пикетажное положение главных точек кривой определяют по формулам: ПК НК = ПК ВУ - Т; ПК КК = ПК НК + К; ПК СК = ПК НК + К/2. (15.3) Правильность вычислений контролируют по формулам: ПК КК = ПК ВУ + Т - Д; ПК СК = ПК ВУ + Д/2. (15.4) Пример. Измерено a = 18°19¢ и задан радиус R = 600 м. Вершина угла расположена на пикете 6 + 36,00. По формулам (15.1) и (15.2) или по таблицам находим элементы кривой: Т = 96,73 м; К = 191,81 м; Д = 1,65 м; Б = 7,75 м. Вычислим пикетажное положение главных точек: Контроль: ПК ВУ 6 + 36,00 ПК ВУ 6 + 36,00 - Т 96,73 + Т 96,73 ПК НК 5 + 39,27 7 + 32,73 + К 1 + 91,81 - Д 1,65 ПК КК 7 + 31,08 ПК КК 7 + 31,08
ПК НК 5 + 39,27 ПК ВУ 6 + 36,00 + К/2 95,90 - Д/2 0,82 ПК СК 6 + 35,17 ПК СК 6 + 35,18 Переходные кривые. Непосредственное сопряжение прямого участка пути с круговой кривой приводит к тому, что во время движения поезда в месте сопряжения внезапно возникает центробежная сила F, прямо пропорциональная квадрату скорости движения v и обратно пропорциональная радиусу кривой . Чтобы обеспечить постепенное нарастание центробежной силы, между прямой и круговой кривой вставляют переходную кривую, радиус кривизны r которой плавно изменяется от ¥ до R. Если положить, чтобы центробежная сила менялась пропорционально расстоянию s от начала кривой, то получим , где s и r - текущие значения расстояния от начала переходной кривой и ее радиуса кривизны; R – радиус кривизны в конце переходной кривой. Индексом k отмечены значения переменных в конце переходной кривой. Для радиуса кривизны переходной кривой в текущей точке i найдём: r = lR / s, (15.5) где через l обозначена длина переходной кривой sk. Кривая, описываемая уравнением (15.5), в математике называется клотоидой, или радиоидальной спиралью. Угол поворота трассы на переходной кривой. На бесконечно малом отрезке кривой ds (рис. 15.4, а) происходит поворот трассы на угол . Подставляя выражение радиуса кривизны r из (15.5), получим . Выполним интегрирование от начала кривой НК, где j = 0 и s = 0, до текущей точки i: , откуда Rl j = s 2/2.
Рис. 15.4 Схема переходной кривой: а – углы поворота трассы: φ – в текущей точке i, β – в конце переходной кривой (точка КПК); б - приращения координат
Из полученного уравнения вытекают формулы: ; ; l = 2 R b, (15.6) где b - угол поворота трассы в конце переходной кривой; l - длина переходной кривой; R - радиус кривизны в конце переходной кривой, равный радиусу следующей за нею круговой кривой. Координаты точки переходной кривой. Совместим начало координат с началом переходной кривой и направим ось x по касательной к ней (см. рис. 15.4, а). Бесконечно малому приращению дуги кривой соответствуют бесконечно малые приращения координат (рис. 15.4, б): dx = cosj× ds; dy = sinj× ds. (15.7) Разложим синус и косинус в ряд и, удержав в разложениях по два члена, подставим в них выражения для j из (15.6): cosj = 1-j2/2 = 1 - s 4/(8 R 2 l 2); sinj = j - j3/6 = s 2/(2 Rl) - s 6/(48 R 3 l 3). Подставляя полученные выражения в (15.7) и выполняя интегрирование, найдём: ; (15.8) . (15.9) Смещение начала кривой (сдвижка). На рис. 15.5 дуга НК-КПК представляет собой переходную кривую, переходящую после точки КПК в круговую. Продолжим круговую кривую до точки Q, где её направление, параллельно оси x. Обозначим через m смещение, параллельное оси x, начала переходной кривой относительно точки Q, в которой начиналась бы круговая кривая при отсутствии переходной. Через p обозначим смещение в перпендикулярном направлении. Из рис. 15.5 видно: , где x КПК и y КПК - координаты конца переходной кривой, вычисляемые по формулам (15.8) и (15.9) с аргументом s = l. Сочетание круговой кривой с переходными. На рис. 15.6 показана кривая, поворачивающая трассу на угол a и состоящая из круговой части с радиусом R и двух переходных кривых одинаковой длины l.
Если бы не было переходных кривых, в образованный прямыми линиями трассы угол была бы вписана дуга окружности радиуса R, равная Q -СК- Q 1 и имеющая длину K = R a. При наличии переходных кривых на каждой из них происходит поворот трассы на угол b, отчего на долю круговой кривой приходится поворот на угол a-2b. Поэтому суммарная длина кривой равна Kc = R (a-2b) + 2 l = R a - 2 R b + 2 l = K - l + 2 l = K + l. Тангенс и биссектриса определяются по формулам: Тс = T + m + T p; Бc = Б + Б p, где Т p = p tg(a/2); Б p = p sec(a/2). Домер в этом случае равен . В полевых условиях значения m,Т p и Б p вычисляют на микрокалькуляторе или выбирают из таблиц для разбивки кривых на железных дорогах. Пикетажное положение главных точек кривой вычисляют по формулам, аналогичным (15.3) и (15.4).
|
||||||||||||
Последнее изменение этой страницы: 2016-08-15; просмотров: 756; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.119.122.140 (0.009 с.) |