Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Свободные и затухающие колебания в контуре. Вынужденные электрические колебания↑ ⇐ ПредыдущаяСтр 4 из 4 Содержание книги
Поиск на нашем сайте
Колебательным контуром называется замкнутая цепь, содержащая катушку индуктивности с индуктивностью L и конденсатор с емкостью С. Если в цепи нет активного сопротивления R (резистора), то в контуре возможны гармонические (незатухающие) колебания тока I, заряда конденсатора q и напряжения на элементах. Напряжение на конденсаторе: ЭДС самоиндукции в катушке НАПРЯЖЕНИЕ НА РЕЗИСТОРЕ ОПРЕДЕЛЕНИЕ ТОКА ДИФФЕРЕНЦИАЛЬНОЕ УРАВНЕНИЕ свободных незатухающих колебаний где w0 = - собственная частота контура. Период Т = 2p Его решение q(t) = qv cos(w0 t + a), где a - начальная фаза. ДИФФЕРЕНЦИАЛЬНОЕ УРАВНЕНИЕ свободных затухающих колебаний , где b = - коэффициент затухания. Его решение q(t) = qv0 е-bt cos(wt + a), где - частота затухающих колебаний. логарифмическим декрементном затухания – ДОБРОТНОСТЬ контура равна Q = Рассмотрим электромагнитный колебательный контур, в котором помимо ёмкости, индуктивности, сопротивления есть ещё и генератор переменного напряжения, то есть источник электрической энергии. Очевидно, что в таком контуре со временем (это время обычно мало) установятся вынужденные колебания тока с частотой генератора и с постоянной амплитудой; подвод энергии от генератора будет в точности компенсировать потери энергии на сопротивлении. Дифференциальное уравнение вынужденных колебаний заряда в электромагнитном контуре в стандартном (каноническом) виде получается следующим: или
Вихревое электрическое поле Если провод неподвижен, а магнитное поле переменное, то в пространстве (в проводнике, в частности) возникает особое электрическое поле, называемое вихревым электрическим полем. Оно было открыто теоретически Максвеллом. Вихревое электрическое поле отличается от электростатического (потенциального) следующими свойствами: источником поля служат не заряды, а магнитное поле; в вихревом электрическом поле силовые линии – замкнутые, а работа по перемещению заряда по замкнутой линии не равна нулю. Рассмотрим подробнее вихревое электрическое поле на следующем примере. Пусть однородное переменное магнитное поле с индукцией B (t) создается внутри длинного соленоида С, по проводам которого протекает переменный ток. В этом поле находится неподвижное проволочное кольцо К радиусом r и площадью S. Линии магнитной индукции направлены вдоль оси соленоида и перпендикулярны плоскости кольца. Согласно, в кольце возникает ЭДС индукции. Вследствие осевой симметрии, замкнутые линии напряженности вихревого электрического поля представляют собой окружности. Вектор E направлен по касательной к окружности, а его модуль E постоянен на данной окружности. На заряд q в кольце действует сила q E, которая при перемещении заряда по кольцу длиной L совершает стороннюю работу. Следовательно, ЭДС в кольце равна произведению напряженности вихревого электрического поля на длину кольца => Если ток в соленоиде изменяется по гармоническому закону с циклической частотой ω (ω = 2πν = 2π/T), то и магнитная индукция будет изменяться с такой же частотой где Bm – максимальное значение (амплитуда). Тогда dB/dt = ωBm cos ωt. Для нахождения напряженности вихревого электрического поля на расстоянии r от оси соленоида подставим в L =2πr и S = πr2, тогда представляет амплитуду электрического поля. Напряженность вихревого электрического поля пропорциональна частоте тока. Она может достигать больших значений в магнитных полях, создаваемых токами высокой частоты радиодиапазона. является основным уравнением Максвелла и выражает важнейшее свойство электромагнитного поля: в переменном магнитном поле возникает вихревое электрическое поле. 28. ТОК СМЕЩЕ́НИЯ
В соответствии с теорией Максвелла, в цепи переменного тока, содержащей конденсатор, переменное электрическое поле в конденсаторе в каждый момент времени создает такое магнитное поле, какое создавал бы ток, (названный током смещения), если бы он протекал между обкладками конденсатора. Из этого определения следует, что JD = J (т. е., численные значения плотности тока проводимости и плотности тока смещения равны), и, следовательно, линии плотности тока проводимости внутри проводника непрерывно переходят в линии плотности тока смещения между обкладками конденсатора. Плотность тока смещения jсм характеризует скорость изменения электрической индукции D во времени: Ток смещения не выделяет джоулевой теплоты, его основное физическое свойство — способность создавать в окружающем пространстве магнитное поле. Вихревое магнитное поле создается полным током, плотность которого j, равна сумме плотности тока проводимости и тока смещения. Именно поэтому для этой величины и было введено название ток. Уравнения Максвелла Уравнения Максвелла - уравнения классической электродинамики, описывающие динамику электромагнитного поля и его связь с зарядами и токами. Уравнения Максвелла явились теоретическим обобщением экспериментальных законов: Кулона, Ампера, законов электромагнитной индукции и других. Уравнения Максвелла в гауссовой системе единиц имеют вид div B = 0, div D = 4πρ,
где E - напряжённость электрического поля, H - напряжённость магнитного поля, D - электрическая индукция, B - магнитная индукция, ρ - плотность электрического заряда, j - плотность электрического тока. Для того, чтобы использовать уравнения Максвелла для решения задач электродинамики в различных средах, необходимо учесть индивидуальные свойства среды. D = εE, B = μH, ε - диэлектрическая проницаемость среды, μ - магнитная проницаемость среды, σ - электропроводность среды. В вакууме без зарядов и токов D = ε0E, B = μ0H, div E = 0, div H = 0,
Эта система дифференциальных уравнений имеет решение - гармоническую плоскую волну. Векторы электрического и магнитного полей перпендикулярны направлению распространения волны и друг другу и находятся в фазе. Волна распространяется со скоростью. c = (μ0ε0)-1/2.
c - скорость света в вакууме, c = 2.99792458·108 м/с, ε0 - электрическая постоянная, ε0 = 8.85418782·10-12 Ф/м, μ0 - магнитная постоянная, μ0 = 1.25663706·10-6 Гн/м.
|
||||
Последнее изменение этой страницы: 2016-08-14; просмотров: 205; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.219.231.197 (0.008 с.) |