Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Применение удобрений и пестицидов, их воздействие на экосистемыСодержание книги
Поиск на нашем сайте
Минеральные удобрения – неминуемое следствие интенсивного ведения земледелия. В настоящее время их мировое производство равно 200—220 млн т/г, около 35—40 кг/г. на человека. Экологические последствия применения минеральных удобрений рассматривают с трех точек зрения: местное влияние удобрений на экосистемы и почвы, в которые они вносятся; влияние на другие экосистемы, их звенья; влияние на качество продукции, здоровье людей В почве происходят такие изменения, которые приводят к потере плодородия. Для нейтрализации этого приходится вносить в почву минеральные удобрения. Но многие из них содержат посторонние примеси. В частности, внесение удобрений может повышать радиоактивный фон, приводить к накоплению тяжелых металлов. Главный способ сократить эти последствия – умеренное и научно обоснованное их применение (лучшие дозы, наименьшее количество вредных примесей, чередование с удобрениями органическими и пр.). Влияние удобрений на атмосферный воздух, как и воду, связано в основном с азотными формами. Потери азота из удобрений составляют от 10 до 50% от его внесения. Негативное влияние на воды и их обитателей оказывают хлорсодержащие удобрения. Фосфорные формы удобрений содержат в своем составе фтор, тяжелые металлы и радиоактивные элементы. Минудобрения оказывают отрицательное воздействие как на растения, так и на качество продукции, а также на организмы, употребляющие ее. При больших дозах азотных удобрений увеличивается риск заболеваний растений. Фосфор и калий, смягчают вредное воздействие азота. Но при высоких дозах и они вызывают легкие виды отравления растений. Хлорсодержащие удобрения (хлористый аммоний, хлористый калий), отрицательно воздействуют на животных и человека через воду. Пестициды – группа веществ, которые используются для уничтожения или уменьшения численности нежелательных для человека организмов. Гербициды – вещества, используемые для уничтожения растений; инсектициды – насекомых; фунгициды – грибов; акарициды – клещей. К пестицидам относят вещества, отпугивающие организмов, приносящих вред человеку или его изделиям (одежде, постройкам). Только около 1 % вносимых в среду ядов имеет непосредственный контакт с организмами, против которых они применяются. Экологическая вредность пестицидов зависит от их ядовитости, продолжительности жизни. В экологическом отношении особую тревогу вызывает ежегодное увеличение объемов применения пестицидов. Это связано не только с расширением обрабатываемых площадей, но и с привыканием организмов к пестицидам. Опасность ядерных катастроф Ионизирующее излучение — в самом общем смысле — различные виды микрочастиц и физических полей, способные ионизировать вещество. В более узком смысле к ионизирующему излучению не относят ультрафиолетовое излучение и излучение видимого диапазона света, которое в отдельных случаях также может быть ионизирующим. Излучение микроволнового и радиодиапазонов не является ионизирующим Физические свойства ионизирующих излучений По механизму взаимодействия с веществом выделяют непосредственно потоки заряженных частиц и косвенно ионизирующее излучение (потоки нейтральных элементарных частиц — фотонов и нейтронов). По механизму образования — первичное (рождённое в источнике) и вторичное (образованное в результате взаимодействия излучения другого типа с веществом) ионизирующее излучение. Энергия частиц ионизирующего излучения лежит в диапазоне от нескольких сотен электронвольт (рентгеновское излучение, бета-излучение некоторых радионуклидов) до 1015 — 1020 и выше электрон-вольт (протоны космического излучения, для которых не обнаружено верхнего предела по энергии). В зависимости от типа частиц и их энергии сильно различаются длина пробега и проникающая способность ионизирующего излучения — от долей миллиметра в конденсированной среде (альфа-излучение радионуклидов, осколки деления) до многихкилометров (высокоэнергетические мюоны космических лучей).Важными показателями взаимодействия ионизирующего излучения с веществом служат такие величины, как линейная передача энергии (ЛПЭ), показывающая, какую энергию излучение передаёт среде на единице длины пробега при единичнойплотности вещества, а также поглощённая доза излучения, показывающая, какая энергия излучения поглощается в единице массы вещества. В Международной системе единиц (СИ) единицей поглощённой дозы является грэй (Гр), численно равный отношению 1 Дж к 1 кг. Ранее широко применялась также экспозиционная доза излучения — величина, показывающая, какой заряд создаёт фотонное (гамма- или рентгеновское) излучение в единице объёма воздуха. Наиболее часто применяющейся единицей экспозиционной дозы был рентген (Р), численно равный 1 СГСЭ-единицы заряда к 1 см³ воздуха.Биологическое действие ионизирующих излучений Ионизация, создаваемая излучением в клетках, приводит к образованию свободных радикалов. Свободные радикалы вызывают разрушения целостности цепочек макромолекул (белков и нуклеиновых кислот), что может привести как к массовой гибели клеток, так и канцерогенезу и мутагенезу. Наиболее подвержены воздействию ионизирующего излучения активно делящиеся (эпителиальные, стволовые, также эмбриональные) клетки. Из-за того, что разные типы ионизирующего излучения обладают разной ЛПЭ, одной и той же поглощённой дозе соответствует разная биологическая эффективность излучения. Поэтому для описания воздействия излучения на живые организмы вводят понятия относительной биологической эффективности (коэффициента качества) излучения по отношению к излучению с низкой ЛПЭ (коэффициент качества фотонного и электронного излучения принимают за единицу) и эквивалентной дозы ионизирующего излучения, численно равной произведению поглощённой дозы на коэффициент качества. После действия излучения на организм в зависимости от дозы могут возникнуть детерминированные и стохастические радиобиологические эффекты. Например, порог появления симптомов острой лучевой болезни у человека составляет 1—2 Зв на всё тело. В отличие от детерминированных, стохастические эффекты не имеют чёткого дозового порога проявления. С увеличением дозы облучения возрастает лишь частота проявления этих эффектов. Проявиться они могут как спустя много лет после облучения (злокачественные новообразования), так и в последующих поколениях (мутации). Основным источником информации о стохастических эффектах воздействия ионизирующего излучения являются данные наблюдений за здоровьем людей, переживших атомные бомбардировки Хиросимы и Нагасаки. Японские специалисты в течение всех лет после атомной бомбардировки двух городов наблюдали тех 87 500 человек, которые пережили ее. Средняя доза их облучения составила 240 миллизиверт . При этом прирост онкологическихзаболеваний за последующие годы составил 9%. При дозах менее 100 миллизиверт отличий между ожидаемой и наблюдаемой в реальности заболеваемостью никто в мире не установил.Гигиеническое нормирование ионизирующих излучений Нормирование осуществляется по санитарным правилам и нормативам СанПин 2.6.1.2523-09 «Нормы радиационной безопасности (НРБ-99/2009)». Устанавливаются дозовые пределы эквивалентной дозы для следующих категорий лиц: § персонал — лица, работающие с техногенными источниками излучения (группа А) или находящиеся по условиям работы в сфере их воздействия (группа Б); § все население, включая лиц из персонала, вне сферы и условий в их производственной деятельности. Основные пределы доз и допустимые уровни облучения персонала группы Б равны четверти значений для персонала группы А. Эффективная доза для персонала не должна превышать за период трудовой деятельности (50 лет) 1000 мЗв, а для обычного населения за всю жизнь — 70 мЗв. Планируемое повышенное облучение допускается только для мужчин старше 30 лет при их добровольном письменном согласии после информирования о возможных дозах облучения и риске для здоровья.
|
||||
Последнее изменение этой страницы: 2016-08-12; просмотров: 216; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.133.153.224 (0.01 с.) |