Микроскоп, оптические устройства и приспособления, их разрешающая способность, назначение. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Микроскоп, оптические устройства и приспособления, их разрешающая способность, назначение.



микробиологич. исследований использую несколько типов микроскопов (световой, люминесцентный, электронный) и спец. методы микроскопии (фазово-контрастный, темнопольный). Микроскопы предназначены для изучения формы, структуры, размеров и других признаков различных МКО, величина которых не менее 0,2-0,3мкм. Предельная разрешающая способность иммерсионного микроскопа 0,2 мкм. Общее увеличение микроскопа определяется произведением увеличения объектива на увеличение окуляра. Световой микроскоп - все объекты рассматриваются в проходящем свете сухим и иммерсионным объективом, Разрешающая способность - 0,4-0,2 мкм, Используется для изучения морфологии, структуры, подвижности и тинкториальных свойств микроорганизмов. Темнопольная микроскопия основана на явлении дифракции света при сильном боковом освещении взвешенных в жидкости мельчайших частиц. Фазофо-контастная микроскопия дает возможность увидеть в микроскопе прозрачные объекты, они приобретают высокую контрастность изображения, кот. может быть позотивной(темный объект в светлом поле) или негатиывной(светлое изображение в темном поле). Темнопольная и фазово-контр. микросокпии позволяют проводить широкий круг микроскопических исследований, визуальное наблюдение, фотографирование, применение светлого и тёмного полей в прямом и отражённом свете, прямое и косое освещение, микроскопирование в поляризованном свете, методом фазовых контрастов, в свете люминесценции. Люминесцентный микроскоп – Использование ультрафиолетовых лучей и люминесцирующих красителей, способных светиться (флюоресцировать) под УФ - лучами. Позволяет наблюдать микроорганизмы в излучаемом ими свете и цвете. Различаю первичную(собственную) люминесценцию и вторичную (наведенную) при помощи красителя. Разрешающая способность - 0.1 мкм. Используется не только для изучения морфологии, и тинкториальных свойств, но и для исследования процессов жизнедеятельности микробной клетки. Электронный микроскоп - Принцип действия и устройства подобен таковым у обычного светового микроскопа. Различия - вместо источника света – источник электроволн (вольфрамовая проволока, нагреваемая электротоком, вместо оптических линз - электромагнитные). Разрешающая - способность 0.001 мкм. Широко используется для изучения вирусов, мельчайших микроорганизмов. В бактериологии используется для изучения деталей тонкого строения. Дополнительные устройства: 1) Бинокулярная насадка АУ – 12. Приближает микроскопию к условиям естественного зрения. Повышение трудоспособности работающего с микроскопом, Разрешающая способность несколько повышена. 2) Микрометр: объект, окуляр. Объект-микрометр и окуляр-микрометр позволяют определить размеры бактерий с помощью расчётных сеток. Разрешающая способность несколько повышается, даёт возможность изучать микроорганизмы в нативном состоянии. 3) Темнопольный конденсор к световому микроскопу. Затемнение центральной части конденсора и, как следствие, боковое освещение объекта позволяет на тёмном фоне препарата видеть микроорганизмы в отражённом от них свете. 4) Фазово-контрастное устройство (объектив). При обычной микроскопии в проходящем свете повышает контрастность и отражение за счет превращения фазовых смещений световой волны в амплитудные, улавливаемые глазом. Используется для наблюдения за живыми биообъектами. 5) Столик-термостат. Сохраняет подвижность объекта. При анализе простейших.

 

Методы и средства иммунокоррекции, иммуномодуляции, их значение, принципы применения при иммунодефицитах.

Иммуномодуляторы – лекарственные средства, обладающие иммунотропной активностью, которые в терапевтических дозах восстанавливают функции иммунной системы (эффективную иммунную защиту).

Иммунокорректоры – средства и воздействия (в том числе и лекарственные), обладающие иммунотропностью, которые нормализуют конкретное нарушенное то или иное звено иммунной системы (компоненты или субкомпоненты Т–клеточного иммунитета, В–клеточ но го иммунитета, фагоцитоза, комплемента). Таким образом, иммунокорректоры – это иммуномодуляторы «то чеч ного» действия.

Главной мишенью применения иммуномодулирующих препаратов являются вторичные иммунодефициты, которые проявляются в частных, рецидивирующих, трудно поддающихся лечению инфекционно–вос па ли тельных заболеваниях различных локализаций. В основе любого хронического инфекционно–воспалитель но го процесса лежат те или иные изменения в иммунной сис теме, которые и являются одной из причин существования этого процесса.

В заключение следует напомнить некоторые общие принципы применения иммуномодуляторов у больных с недостаточностью антиинфекционной защиты [3]:

1. Иммуномодуляторы назначают в комплексной те ра пии одновременно с антибиотиками, противогрибковыми, противопротозойными или противовирусными средствами.

2. Целесообразным является раннее назначение иммуномодуляторов, с первого дня применения химиотерапевтического этиотропного средства.

3. Иммуномодуляторы, действующие на фагоцитарное звено иммунитета, можно назначать больным как с выявленными, так и с невыявленными нарушениями иммунного статуса, т.е. основанием для назначения препарата является клиническая картина заболевания.

4. При наличии в данном лечебно–профи лак ти че ском учреждении соответствующей материально–тех ни ческой базы применение иммуномодуляторов целесообразно проводить на фоне иммунологического мо ниторинга. Этот мониторинг следует проводить вне за­висимости от того, выявлены какие–либо исходные изменения в иммунной системе или нет.

5. Иммуномодуляторы можно применять при проведении иммунореабилитационных мероприятий в виде монотерапии (в частности, при неполном выздоровлении после перенесенного острого инфекционного заболевания).

6. Наличие понижения какого–либо параметра им му нитета, выявленного при иммунодиагностическом ис следовании у практически здорового человека, не обя зательно является основанием для назначения ему иммуномодулирующей терапии. Такие люди должны на­ходиться на учете в соответствующем лечебно–про фи лак тическом учреждении и составлять группу наблюдения по иммунному статусу.

Каковы профилактические и лечебные мероприятия при поступлении в стационар больного с бактериологически подтвержденным диагнозом “ботулизм”.

Ботулизм – токсинемическая инфекция. Основным патогенетическим фактором является токсин, который поступает в кровь и распространяется по организму по кровеносным сосудам. Действует токсин на синаптическую передачу в нервной системе, блокируя ее. Избирательно поражаются альфа-мотонейроны передних рогов спинного мозга, что обусловливает появление характерных параличей мышц. При достоверно подтвержденном диагнозе с помощью различных микробиологических методов проводят мероприятия направленные на профилактику и лечение данного заболевания.

Профилактика: уничтожение всей партии пищевых продуктов, потенциально содержащей ботулотоксин и его продуцентов с целью предотвращения массовой заболеваемости; Для специфической профилактики используют ботулинический полианатоксин, содержащий анатоксины А, В и Е. Для экстренной профилактики используют поливалентную (типов А, В, Е) лошадиная сыворотка, выпускаемая в сухом и жидком виде.

Лечение: Для лечения по безредко больному внутривенно вводят одну международную лечебную дозу(содержит по 10000 МЕ сывороток типов А и Е и 5000 типа В); однократного введения обычно недостаточно, поэтому ее вводят ежедневно до достижения клинического эффекта. После лабораторного выявления типа возбудителя вводят сыворотку только против данного типа.

 

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 15

Туляремия и ее возбудитель.

Таксономия: отдел Gracilicutes, род Francisella. Возбудитель – Francisella tularensis.

Морфология: мелкие кокковидные полиморфные палочки, неподвижные, грамотрицательные, не образующие спор, могут образовывать капсулу.

Культуральные свойства: Факультативный аэроб, оптим. температура+37С. На простые питательных средах не растет. Культивируется на желточных средах, на средах с добавлением крови и цистеина. Рост медленный. Образуют мелкие колонии, круглые с ровным краем, выпуклые, блестящие.

Биохимические свойства: слабо ферментируют до кислоты без газа глюкозу, мальтозу, левулезу, маннозу, образуют сероводород. Туляремийный микроб по вирулентности разделен на подвиды: голарктическую (не ферментирует глицерин, цитруллин), неарктическую (ферментирует глицерин, не ферментирует цитруллин; среднеазиатскую (ферментирует глицерин и цитруллин, мало вирулентен).

Антигенные свойства: Содержит соматический О-и поверхностный Vi- антигены. Имеют антигенную близость с бруцеллами. В R- форме теряют Vi- антиген, а вместе с ним вирулентность и иммуногенность.

Факторы патогенности: неарктический подвид – высокая патогенность для человека при кожном заражении, голарктический и среднеазиатский подвиды – умеренно патогенны. Вирулентными являются S-формы колоний. Патогенные свойства связаны с оболоченным антигенным комплексом и токсическими веществами типа эндотоксина. Вирулентность обусловлена:капсулой, угнетающей фагоцитоз; нейраминидазой, способствующей адгезии; эндотоксином (интоксикация); аллергенными свойствами клеточной стенки;

Эпидемиология: природно-очаговое заболевание. Источник инфекции – грызуны. Множественность механизмов передачи. Передача возбудителя через клещей, комаров. Человек заражается контактным, алиментарным, трансмиссивными путями.

Резистентность: в окружающей среде сохраняется долго, нестоек к высокой температуре, чувствителен к антибиотикам (тетрациклин, левомицетин).

Патогенез: На месте внедрения возбудителя (кожа, слизистые оболочки глаз, дыхательных путей, желудочно-кишечного тракта) развивается первичный воспалительный очаг, откуда возбудитель распространяется по лимфатическим сосудам и узлам, поражая их с образованием первичных бубонов; в различных органах формируются гранулемы. Микроб и его токсины проникают в кровь, что приводит к бактериемии и генерализации процесса, метастазированию и развитию вторичных туляремийных бубонов.

Клиника. Инкубационный период 3—7 дней. Болезнь начинается остро, внезапно с повышения температуры тела. Различают бубонную, язвенно-бубонную, глазо-бубонную, абдоминальную, легочную и генерализованную (септическую) клинические формы туляремии.

Иммунитет. После перенесенной инфекции иммунитет сохраняется длительно, иногда пожизненно; развивается аллергизация организма к антигенам возбудителя.

Микробиологическая диагностика:

Бактериоскопическое исследование: Из исследуемого материала готовят мазки, окрашивают по Грамму. В чистой культуре - мелкие кокки. В мазках из органов преобладают палочковидные формы. Спор не образуют, грамотрицательные, иногда выражена биполярная окраска.

Бактериологическое исследование и биопроба. Применяются для выделения чистой культуры бактерий туляремии. Наиболее чувствительными животными являются мыши и морские свинки, которые погибают даже при подкожном введении единичных бактерий. Выделение бактерий туляремии проводят на свернутой яично-желточной среде, глюкозоцистиновом кровяном агаре. Вирулентные штаммы образуют S-формы колоний—мелкие, гладкие, беловатого цвета с голубоватым оттенком.

Идентификацию чистой культуры проводят по морфологии бактериальных клеток, характеру роста, биохимическим и антигенным свойствам. Биохимические свойства этих бактерий выявляются на специальной плотной среде с ограниченным содержанием белка. Бактерии туляремии содержат оболочечный антиген, с которым связаны их вирулентные и иммуногенные свойства, и О-соматический антиген. По антигенным свойствам близки к бруцеллам.

Серодиагностика. Ставится реакция агглютинации с туляремийным диагностикумом. Относительно позднее появление агглютининов в крови (на 2-й неделе болезни) затрудняет применение этой реакции для ранней диагностики, однако их длительное сохранение делает возможной ретроспективную диагностику. Обязательно прослеживается нарастание титра агглютинации. Наиболее чувствительным методом серодиагностики туляремии является РПГА.

Для экспресс-диагностики применяется кровяно-капельная реакция: кровь из пальца наносят на стекло, добавляют каплю дистиллированной воды (для лизиса эритроцитов), вносят каплю диагностикума и смешивают стеклянной палочкой. При наличии в крови агглютининов в диагностическом титре (1:100 и выше) в капле немедленно наступает агглютинация диагностикума; при титрах ниже диагностических агглютинация происходит через 2—3 мин.

Кожно-аллергическая проба. Выпускаются два вида тулярина: для внутрикожной пробы и для надкожной. Проба высокочувствительна и дает положительные результаты у больных, начиная с 3—5-го дня болезни, но также и у переболевших и вакцинированных, поэтому оценка реакции должна проводиться с осторожностью.

Лечение: антибиотики стрептомицинового и тетрациклинового ряда. В случае затяжного течения – комбинированная антибиотикотерапия с использованием убитой лечебной сыворотки.

Профилактика: специфическая профилактика - применяют живую туляремийную вакцину. Иммунитет длительный, проверяется с помощью пробы с тулярином.

Туляремийный диагностикум – взвесь убитых бактерий туляремии, применяется в случае постановки реакции агглютинации при серодиагностике.

Тулярин – взвесь туляремийных бактерий (вакцинного штамма), убитых нагреванием, для постановки кожно-аллергической пробы.

Туляремийная живая сухая накожная вакцина – высушенная живая культура вакцинного штамма, для профилактики.

 

2. Дыхание микробов, его варианты, сущность, механизмы аэробного и анаэробного дыхания, определение типа.

Дыхание (или биологическое окисление) - это сложный процесс, который сопровождается выделением энергии, необходимой микроорганизмам для синтеза различных органических соединений. Бактерии для дыхания используют кислород. Однако Л. Пастером было доказано существование таких бактерий, для которых наличие свободного кислорода является губительным, энергия, необходимая для жизнедеятельности, получается ими в процессе брожения. Все бактерии по типу дыхания подразделяются на облигатные аэробы, микроаэрофилы, факультативные анаэробы, облигатные анаэробы. Облигатные аэробы развиваются при наличии в атмосфере 20% кислорода (микобактерии туберкулеза), содержат ферменты, с помощью которых осуществляется перенос водорода от окисляемого субстрата к кислороду воздуха. Микроаэрофилы нуждаются в значительно меньшем количестве кислорода, и его высокая концентрация хотя и не убивает бактерии, но задерживает их рост (актиномицеты, бруцеллы, лептоспиры). Факультативные анаэробы могут размножаться как в присутствии, так и в отсутствие кислорода (возбудители брюшного тифа, паратифов, кишечная палочка). Облигатные анаэробы -бактерии, для которых наличие молекулярного кислорода является губительным (клостридии столбняка, ботулизма). Аэробные бактерии в процессе дыхания окисляют различные органические вещества Дыхание у анаэробов происходит путем ферментации субстрата с образованием небольшого количества энергии. Процессы разложения органических веществ в безкислородных условиях, сопровождающиеся выделением энергии, называют брожением. В зависимости от участия определенных механизмов различают следующие виды брожения: спиртовое, осуществляемое дрожжами, молочно-кислое, вызываемое мол очно-кислыми бактериями, масляно-кислое и пр. Для выращивания анаэробов в бактериологических лабораториях применяют анаэростаты – специальные емкости, в которых воздух заменяется смесью газов, не содержащих кислорода. Воздух можно удалять из питательных сред путем кипячения, с помощью химических адсорбентов кислорода, помещаемых в анаэростаты или другие емкости с посевами.

 



Поделиться:


Последнее изменение этой страницы: 2016-08-12; просмотров: 309; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.138.174.174 (0.021 с.)