Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Дезаминирование аминокислот. ВосстановительноеСодержание книги
Поиск на нашем сайте
АМИНИРОВАНИЕ КЕТОКИСЛОТ. Основными типами дезаминирования аминокислот являются окислительное и непрямое дезаминирование. Окислительное дезаминирование – процесс отщепления аминогруппы от аминокислоты в виде аммиака с образованием соответствующей кетокислоты. Окислительному дезаминированию подвергается лишь глутамат, поскольку только для этой аминокислоты имеется специфичная высокоактивная НАД(Ф)-зависимая глутаматдегидрогеназа. Этот фермент локализован как в митохондриях, так и в цитозоле клетки. Реакция протекает в две стадии. На первой стадии происходит ферментативное дегидрирование аминокислоты с образованием иминокислоты. Акцептором атомов водорода является НАД(Ф). На второй стадии иминокислота спонтанно, с участием воды, распадается на аммиак и альфа-кетоглутарат. Продукт реакции может включаться в реакции ЦТК либо использоваться в качестве акцептора аминогруппы в реакциях трансаминирования. Реакция имеет значение также для катаболизма таких аминокислот как пролин, глутамин, аргинин и гистидин, так как их метаболизм происходит через стадию образования глутамата. Дезаминирование других аминокислот является непрямым и происходит в два этапа. На первом этапе аминокислоты подвергаются трансаминированию. Причем, в данном случае акцептором аминогруппы служит 2-кетоглутарат. В результате трансаминирования аминокислота лишается аминогруппы, а ее углеродный скелет подвергается катаболизму. В результате присоединения аминогруппы к 2-кетоглутарату образуется глутамат, который вступает во второй этап непрямого дезаминирования, который заключается в его окислительном дезаминировании. Непрямое дезаминирование является наиболее распространенным типом дезаминирования..
ОБМЕН АММИАКА Основным источником аммиака является дезаминирование аминокислот. Аммиак образуется также в при распаде биогенных аминов и нуклеотидов, гидролизе глутамина и аспарагина. Существенная часть аммиака образуется в кишечнике в результате деятельности микрофлоры и поступает в кровь воротной вены. Образование аммиака происходит во всех тканях, однако его концентрация поддерживается на довольно низком уровне (25–40 мкмоль/л), так как он довольно быстро обезвреживается. Существование механизмов обезвреживания аммиака связано с его токсичностью. Механизмы токсичности аммиака 1.Аммиак сдвигает реакцию восстановительного аминирования кетокислот в сторону образования глутамата 2-кетоглутарат + НАДН2 + NH3 = глутамат + НАД Снижение концентрации a-кетоглутарата вызывает угнетение обмена аминокислот, так как снижается количество акцептора в реакциях трансаминирования, а также гипоэнергетическое состояние в связи со снижением скорости ЦТК. 2.Аммиак усиливает синтез глутамина из глутамата в нервной ткани накопление глутамина в нервных клетках приводит к повышению осмотического давления и может вызвать отек мозга. Снижение концентрации глутамата нарушает образование ГАМК – основного тормозного медиатора Существует несколько способов обезвреживания и выведения аммиака в разных тканях. Основной реакцией обезвреживания аммиака почти во всех тканях является синтез глутамина под действием глутаминсинтазы. глутамат + NH3 + АТФ = глутамин + АДФ + н. Фосфат Глутамин является транспортной формой аммиака, так как представляет собой аминокислоту, способную легко проникать через клеточные мембраны. В наибольших количествах глутамин образуется в мышцах и мозге. Образовавшийся в тканях глутамин транспортируется в печень и почки, где он подвергается действию глутаминазы и расщепляется с образованием глутамата и аммиака. Аммиак в печени вовлекается в реакции орнитинового цикла, в котором образуется мочевина, в почках он используется для образования аммонийных солей. Глутаминаза почек активируется при ацидозе, полученный аммиак используется для образования аммонийных солей, что позволяет нейтрализовать кислые продукты обмена. Экскреция солей аммония составляет 0,5 г/сут. Эта реакция защищает также организм от потери натрия и калия, которые могли бы использоваться в качестве катионов при образовании солей с анионами кислот. Еще одной реакцией обезвреживания аммиака в мозге и некоторых других тканях является восстановительное аминирование 2-кетоглктарата под действием глутаматдегидрогеназы, катализирующей обратимую реакцию. Однако этот путь обезвреживания аммиака используется слабо хотя и представляется выгодным для клеток, так как способствует обезвреживанию сразу 2 молекул аммиака. 2-кетоглутарат +NH3 = глутамат + NH3 = глутамин
ОРНИТИНОВЫЙ ЦИКЛ МОЧЕВИНООБРАЗОВАНИЯ
Орнитиновый цикл мочевинообразования (цикл Кребса-Ген-зелейта) является главным механизмом обезвреживания аммиака в организме. Осуществляется только в клетках печени. Основная часть аммиака для орнитинового цикла поставляется из кишечника, а также при дезаминировании аминокислот в печени и гидролиза глутамина. В ходе этого цикла образуется мочевина – основной конечный продукт азотистого обмена. На долю мочевины приходится 80–85% всего азота, выводимого из организма. Мочевина – нейтральное, хорошо растворимое в воде соединение, легко удаляется из организма с мочой. В среднем за сутки с мочой взрослого человека выводится около 30 г мочевины. Орнитиновый цикл – процесс ферментативный, энергозависимый. На образование одной молекулы мочевины расходуется 3 АТФ. Начальные этапы цикла осуществляются в митохондриях, промежуточные и заключительные – в цитозоле клетки. Орнитиновый цикл начинается с взаимодействия свободного аммиака с углекислым газом, в результате которого образуется карбомоилфосфат. Реакция катализируется карбомоилфосфаттрансферазой и требует присутствия двух молекул АТФ. Одна из них используется в качестве донора фосфатной группы, включаемой в состав карбомоилфосфата. Карбомоилфосфат далее конденсируется с орнитином с образованием цитруллина. Орнитин в данной реакции выступает в качестве своеобразного катализатора, так как от его количества зависит скорость всего цикла. Цитруллин поступает в цитоплазму, где взаимодействует с аспартатом, в результате чего образуется аргининосукцинат. Аспартат приносит в состав мочевины еще одну аминогруппу. Аргининосукцинат в следующей реакции цикла расщепляется с образованием фумарата и аргинина. Аргинин под действием аргиназы расщепляется с образованием мочевины и орнитина. Мочевина выводится из организма с мочой, а орнитин вступает в новый цикл мочевинообразования. Фумарат, образовавшийся в предыдущей реакции, в реакциях ЦТК превращается до оксалоацетата, который в реакции трансаминирования акцептирует аминогруппу аминокислоты и превращается в аспартат и участвует в реакции с цитруллином. Источником азота одной аминогруппы мочевины является свободный аммиак, источником второй – аспартат. Между орнитиновым циклом мочевинообразования и циклом трикарбоновых кислот существует тесная функциональная зависимость. ЦТК поставляет в орнитиновый цикл СО2 и АТФ. При участии ферментов ЦТК происходит превращение фумарата в аспартат, необходимый для образования аргининосукцината. Последовательность реакций превращения фумарата в аспартат, который включается в орнитиновый цикл, выполняет роль своеобразного привода, обеспечивающего функционирование двух циклических процессов: ЦТК и орнитинового цикла.
ЗАНЯТИЕ № 3 СПЕЦИФИЧЕСКИЕ ПУТИ ОБМЕНА АМИНОКИСЛОТ. ОБМЕН НУКЛЕОТИДОВ. ВЗАИМОСВЯЗЬ ОБМЕНОВ ВЕЩЕСТВ
БИОГЕННЫЕ АМИНЫ: ОБРАЗОВАНИЕ И ИНАКТИВАЦИЯ
Биогенные амины являются продуктами декарбоксилирования ряда аминокислот (тирозина, триптофана, гистидина, глутамата) или их гидроксипроизводных (дигидроксифенилаланина – ДОФА, 5-гидрокситриптофана). К биогенным аминам относятся катехоламины (дофамин, норадреналин, адреналин), гистамин, серотонин, триптамин, тирамин, ГАМК (гамма-аминомасляная кислота). Образование биогенных аминов происходит в специализированных клетках (например, катехоламины образуются в клетках мозгового слоя надпочечников, гистамин – в тучных клетках и т.д.) под влиянием специфических тканевых В6-витаминозависимых декарбоксилаз. Синтезированные биогенные амины накапливаются в клетке в комплексе с белками или нуклеотидами. Под влиянием внешнего стимула происходит высвобождение биогенных аминов из связанных форм и активный выход из клетки путем экзоцитоза. Биогенные амины, обладая высокой физиологической активностью, могут выполнять следующие функции: а) нейромедиаторов: дофамин, норадреналин, гистамин, серотонин, триптамин, ГАМК; б) истинных гормонов: адреналин, норадреналин; в) тканевых гормонов: гистамин, серотонин. Накопление биогенных аминов могло бы отрицательно сказаться на течении физиологических процессов и привести к серьезным нарушениям регуляции обменных процессов в отдельных тканях и организме в целом. Однако органы и ткани организма обладают специальными механизмами инактивации биогенных аминов. Основным механизмом инактивации биогенных аминов является их окислительное дезаминирование под влиянием фермента – моноаминооксидазы. Образующиеся в результате окислительного дезаминирования альдегиды окисляются до соответствующих кислот. Моноаминооксидаза является ФАД-содержащим ферментом и локализуется преимущественно в митохондриях. Некоторые ингибиторы моноаминооксидазы используются в медицине для лечения гипертонической болезни, депрессии, шизофрении. Гистамин образуется при декарбоксилировании гистидина, является нейромедиатором. Вызывает расширение кровеносных сосудов, понижает артериальное давление, способствует притоку лейкоцитов к местам воспаления (защитная реакция организма против инфекции). Участвует в процессах сенсибилизации организма (поэтому аллергические состояния лечат противогистаминными препаратами). Способствует отделению соляной кислоты в желудочном соке. ГАМК образуется при декарбоксилировании глутамата. Реакция происходит под действием глутаматдекарбоксилазы, локализованной в сером веществе мозга. Является нейромедиатором, оказывает выраженное тормозное влияние на центральную нервную систему. Используется как компонент лекарственных средств, применяемых при эпилепсии, а также при заболеваниях с выраженным моторным компонентом. Серотонин образуется при декарбоксилировании 5-гидрокситриптофана, является мощным сосудосуживающим агентом и стимулятором сокращения гладких мышц. Серотонин известен как важный нейромедиатор, участвующий в восприятии болевых раздражений (и в блокировке болевой чувствительности в экстремальных ситуациях), координации моторной активности, эмоциональном поведении, поддержании ритма сна и бодрствования (наряду с мелатонином, производным серотонина), терморегуляции, а также во многих других процессах. Серотонин регулирует кишечную перистальтику, вызывает сокращение мускулатуры матки, бронхов и других гладкомышечных органов у животных и человека. Катехоламины образуются в мозговом слое надпочечников, а также в клетках мозга. Предшественником в синтезе является тирозин, который в первой реакции подвергается гидроксилированию с образованием ДОФА – дигидроксифенилаланина. В дальнейшем ДОФА декарбоксилируется и образуется дофамин. b-гидроксилирование дофамина приводит к образованию норадреналина, который в реакции трансметилирования (донором метильной группы выступает S-аденозилметионин) превращается в адреналин. В клетках мозга отсутствует фермент трансметилирования, поэтому образуется только норадреналин. Адреналин и норадреналин являются истинными гормонами. Они обладают сосудосуживающим эффектом, расширяют просвет бронхов, увеличивают частоту сердечных сокращений, способствуют мобилизации жира и гликогена из депо, усиливают гликогенолиз в мышцах.
ТРАНСМЕТИЛИРОВАНИЕ Трансметилирование – это процесс переноса метильной группы (СН3) от метионина, который содержит лабильную метильную группу. Метионин участвует в этом процессе в своей активной форме – в виде S-аденозилметионина, образующегося в реакции с АТФ. S-аденозилметионин под влиянием метилтрансферазы передает свою СН3-группу на вещество, подлежащее метилированию, т.е. акцептору. Сам он при этом превращается в S-аденозилгомоцистеин, а акцептор становится метилированным. Далее S-аденозилгомоцистеин расщепляется на аденозин и гомоцистеин. Наиболее энергично процесс трансметилирования протекает в митохондриях клеток печени. Биороль трансметилирования
Трансметилирование используется в процессе синтеза адреналина из норадреналина, образования креатина, фосфатидилхолина из фосфатидилэтаноламина, холина из этаноламина, посттрансляционной модификации полипептидных цепей белка, процессинга рибонуклеиновых кислот (расстановка метильных меток в РНК обеспечивает их защиту от собственных эндо- и экзонуклеаз). Трансметилирование является важнейшим механизмом обезвреживания ксенобиотиков путем конъюгации аминов, фенолов и тиоловых соединений с образованием метилпроизводных. Образовавшийся в реакции трансметилирования гомоцистеин может повреждать эндотелий сосудов, в связи с чем повышенная концентрация рассматривается как этиологический фактор развития атеросклероза. Путями утилизации гомоцистеина в организме являются Вс- и В12-зависимое метилирование с образованием метионина и В6-зависимое образование цистеина. Донором метильной группы в первом случае выступает метил-ТГФК. Для успешного протекания реакции требуется присутствие кобаламина, который является коферментом метилтрансферазы. Метильная группа вначале переносится на кобаламин, а уже с метилкобаламина на гомоцистеин. Таким образом, в регенерации метионина задействованы два витамина. Функция фолиевой кислоты шире, чем участие только в реакциях трансметилирования. Она обеспечивает обмен и других одноуглеродных фрагментов – формильных, формимино, метинильных, оксиметильных и метиленовых. Основным источником одноуглеродных фрагментов является серин, который, взаимодействуя с активной формой фолиевой кислоты – тетрагидрофолиевой кислотой (FН4), передает ей метиленовую группу (рис. 1). Метилен в составе FH4 либо восстанавливается до метил-FH4, который затем переносится на гомоцистеин с образованием метионина, либо используется в реакциях синтеза тимина. Другой возможный путь – превращение метилен-FH4 в метинил-FH4 или в формил-FH4, которые используются в реакциях синтеза пуриновых нуклеотидов.
Рис.1 Роль фолиевой кислоты в обмене одноуглеродных фрагментов
|
||||
Последнее изменение этой страницы: 2016-08-12; просмотров: 887; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.217.55.29 (0.01 с.) |