Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Средневзвешенный арифметический индекс.↑ ⇐ ПредыдущаяСтр 4 из 4 Содержание книги
Поиск на нашем сайте
Помимо агрегатных индексов в статистике применяются средневзвешенные индексы. К их исчислению прибегают тогда, когда имеющаяся в распоряжении информация не позволяет рассчитать общий агрегатный индекс. Средний индекс - это индекс, вычисленный как средняя величина из индивидуальных индексов. Он должен быть тождествен агрегатному индексу. При исчислении средних индексов используются две формы средних: арифметическая и гармоническая. Среднеарифметический индекс тождествен агрегатному, если весами индивидуальных индексов будут слагаемые знаменателя агрегатного по формуле средней арифметической, будет равна агрегатному индексу. Рассмотрим преобразование агрегатного индекса в среднеарифметический на примере агрегатного индекса физического объема товарооборота. В этом случае индивидуальные индексы должны быть взвешены на базисные соизмерители. Из индивидуального индекса физического объема товарооборота следует, что q1= iqq0. Заменив q1 в числителе агрегатного индекса физического объема товарооборота на iqq0, получим среднеариметический индекс физического объема продукции: Среднеарифметические индексы чаще всего применяются на практике для расчета сводных индексов количественных показателей. Средневзвешенный гармонический индекс. В тех случаях, когда не известны отдельные значения p1 и q1, а дано их произведение р1q1 – товарооборот отчетного периода и индивидуальные индексы цен ip=р1/q1, а сводный индекс должен быть вычислен с отчетными весами, применяется среднегармонический индекс цен. Причем индивидуальные индексы должны быть взвешены таким образом, чтобы среднегармонический индекс совпал с агрегатным. Из формулы ip=р1/р0 определим неизвестное р0 значение и, заменив в формуле агрегатного индекса цен значение р0=р1/ip, получим среднегармонический индекс цен: Таким образом, весами при определении среднегармонического индекса себестоимости являются издержки производства текущего периода, а при расчете индекса цен стоимость продукции этого периода. Применение той или иной формулы индекса зависит от имеющейся в распоряжении информации. Также нужно иметь в виду, что агрегатный индекс может быть преобразован и рассчитан как средний из индивидуальных Индексов только при совпадении перечня видов продукции или товаров (их ассортимента) в отчетном и базисном периодах, т.е. когда агрегатный индекс построен по сравнимому кругу единиц (агрегатные индексы качественных показателей и агрегатные индексы объемных показателей при условии сравнимого ассортимента). По несравнимой продукции нельзя определить индивидуальные индексы, а потому становится невозможным преобразование агрегатного индекса в адекватные ему средние индексы.
Понятие индексов постоянного, переменного состава и структурных сдвигов; их взаимосвязь и экономический смысл. В экономических финансовых исследованиях получили широкое распространение средние показатели: средняя цена, средняя заработная плата, средняя себестоимость и т.д. При динамическом анализе средних показателей используют систему индексов, состоящих из индекса переменного состава, индекса фиксированного (постоянного состава) и индекса структурных сдвигов. Данная система индексов позволяет решить задачу изменения структуры от изменения качественных показателей, а также позволяет выявить влияние факторов на индексируемую величину. Система индексов используется, когда соизмеримая продукция производится на разных участках. Индекс переменного состава – это относительная величина, характеризующая динамику двух средних показателей для однородных совокупностей. Этот индекс отражает влияние двух факторов: – изменение индексируемого показателя у отдельных объектов (частей целого); – изменение удельного веса этих частей в общей структуре совокупностей. Индекс фиксированного состава – характеризует динамику двух средних величин при одинаковой фиксированной структуре совокупности в отчетном периоде. Индекс структурных сдвигов – это отношение двух средних величин, рассчитанных для разной структуры совокупности, но при постоянной величине индексируемого показателя в базисном периоде. Между индексами переменного, фиксированного состава существует взаимосвязь. Индекс переменного состава всегда будет равен произведению индексов фиксированного состава и структурных сдвигов Jпс = Jфс x Jсс.
|
||||
Последнее изменение этой страницы: 2016-08-12; просмотров: 377; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 13.58.84.207 (0.007 с.) |