Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Проверка соответствия ряда распределения закону ПуассонаСодержание книги
Поиск на нашем сайте
Таможенная инспекция провела проверку после выпуска товаров. В результате получен следующий дискретный ряд распределения числа нарушений, выявленных в каждой проверке (табл. 16). Таблица 16. Ряд распределения числа нарушений, выявленных таможенной инспекцией
Проведем анализ этого ряда распределения. Сначала рассчитаем среднее число нарушений в выборке, а также его дисперсию, для чего построим вспомогательную таблицу 17. Таблица 17. Ряд распределения числа нарушений, выявленных таможенной инспекцией
Среднее число нарушений в выборке по формуле (11): = 11/31 = 0,355 (нарушений). Дисперсию определим по формуле (28): = = 0,552 (нарушений2). Построив график этого распределения (полигон) – рис. 11, видно, что данное распределение не похоже на нормальное. Рис. 11. Кривая распределения числа нарушений, выявленных таможенной инспекцией Из структурных характеристик ряда распределения можно определить только моду: Мо = 0, так как по данным табл. 17 такое число нарушений чаще всего встречается (f =24). По формуле (24) определим размах вариации: H = 3 – 0 = 3, что характеризует вариацию в 3 нарушения. По формуле (26) найдем среднее линейное отклонение: . Это означает, что в среднем число нарушений отклоняется от среднего их числа на 0,55. Среднее квадратическое отклонение рассчитаем не по формуле (28), а как корень из дисперсии, которая уже была рассчитана нами выше: , тогда , т.е. в изучаемом распределении наблюдается некоторое число выделяющихся нарушений (с большим числом нарушений, выявленных в одной проверке). Поскольку квартили на предыдущем этапе не определялись, на данном этапе расчет среднего квартильного расстояния пропускаем. Теперь рассчитаем относительные показатели вариации: – относительный размах вариации по формуле (32): = 3/0,355 = 8,45; – линейный коэффициент вариации по формуле (33): = 0,550/0,355 = 1,55; – квадратический коэффициент вариации по формуле(34): = 0,743/0,355 = 2,09. Все расчеты на данном этапе свидетельствуют о значительных размере и интенсивности вариации нарушений, выявленных таможенной инспекцией. Не имеет практического смысла расчет моментов распределения, так как видно из рис. 11, что в изучаемом распределении симметрия отсутствует вовсе, поэтому и расчет эксцесса также бесполезен. Выдвинем гипотезу о соответствии изучаемого распределения распределению Пуассона[26], которое описывается формулой (48): , (48) где P(X) – вероятность того, что признак примет то или иное значение X; e = 2,7182 – основание натурального логарифма; X! – факториал числа X (т.е. произведение всех целых чисел от 1 до X включительно); a = – средняя арифметическая ряда распределения. Из формулы (48) видно, что единственным параметром распределения Пуассона является средняя арифметическая величина. Порядок определения теоретических частот этого распределения следующий: 1) рассчитать среднюю арифметическую ряда, т.е. = a; 2) рассчитать e – a ; 3) для каждого значения X рассчитать теоретическую частоту по формуле (49): . (49) Поскольку a = = 0,355 найдем значение e – 0,355 =0,7012. Затем, подставив в формулу (49) значения X от 0 до 3, вычислим теоретические частоты: m0 = (т.к. 0! = 1); m1 = ; m2 = ; m3 = . Полученные теоретические частоты занесем в 5-й столбец табл. 17 и построим график эмпирического и теоретического распределений (рис. 12), из которого видна близость эмпирического и теоретического распределений. Рис. 12. Эмпирическая и теоретическая (распределение Пуассона) кривые распределения Проверим выдвинутую гипотезу о соответствии изучаемого распределения закону Пуассона с помощью критериев согласия. Рассчитаем значение критерия Пирсона χ2 по формуле (44) в 6-м столбце табл. 17: χ2 =5,479, что меньше табличного (Приложение 3) значения χ2 табл=5,9915 при уровне значимости α = 0,05 и числе степеней свободы ν= 4–1–1=2, значит с вероятностью 0,95 можно говорить, что в основе эмпирического распределения лежит закон распределения Пуассона, т.е. выдвинутая гипотеза не отвергается, а расхождения объясняются случайными факторами. Определим значение критерия Романовского по формуле (46): = 1,74 < 3, что подтверждает несущественность расхождений между эмпирическими и теоретическими частотами. Для расчета критерия Колмогорова в последних трех столбцах таблицы 17 приведены расчеты накопленных частот и разностей между ними, откуда видно, что в 1-ой группе наблюдается максимальное расхождение (разность) D = 2,3. Тогда по формуле (47): . По таблице Приложения 6 находим значение вероятности при λ = 0,4: P = 0,9972 (наиболее близкое значение к 0,413), т.е. с вероятностью, близкой к единице, можно говорить, что в основе эмпирического распределения величины нарушений, выявленных таможенной инспекцией, лежит закон распределения Пуассона, а расхождения эмпирического и теоретического распределений носят случайный характер. 3.7. Контрольные задания На основе условных ранжированных данных таблицы 18 провести анализ вариации величины налоговых сборов (тыс. руб.) с предприятий района, собранных налоговыми органами. Таблица 18. Распределение вариантов для выполнения контрольного задания
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-08-12; просмотров: 160; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.191.237.131 (0.01 с.) |