Скорость и ускорение материальной точки. Нормальное и тангенциальное ускорения, их величина и направление. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Скорость и ускорение материальной точки. Нормальное и тангенциальное ускорения, их величина и направление.



Механика

Скорость и ускорение материальной точки. Нормальное и тангенциальное ускорения, их величина и направление.

 

При прямолинейном движении с постоянной скоростью, скорость определяется как

.

Если скорость меняет величину или направление, ее можно считать постоянной только на малом промежутке времени . Поэтому в каждой точке траектории скорость определяется как отношение пути , пройденного за малое время , к этому временному интервалу (т.е. как производная от пути по времени ),

. (1)

Соответственно путь , пройденный за время , равен интегралу от скорости по времени

. (2)

Скорость - вектор, направленный по касательной к траектории движения.

Расстояние и величина перемещения , пройденные за малое время, совпадают, = . При вектор , секущий траекторию, становится касательным к ней вектором , т.е. направлен по скорости . Поэтому в векторном виде скорость записывают как

. (3)

 

Средней скоростью движения за время называется величина

. (4)

Движение материальной точки также описывают с помощью ее координат . В этом случае, чтобы определить скорость , сначала вычисляют проекции скорости на оси x,y,z, которые равны производным от соответствующих координат по времени

, , . (5)

Тогда величина скорости

. (6)

 

Ускорение точки.

Ускорение характеризует быстроту изменения скорости

, (7)

- изменение вектора скорости за малый промежуток времени .

Ускорение можно разложить на тангенциальное (его еще называют касательным) ускорение и нормальное (центростремительное) ускорение ,

. (8)

Тангенциальное ускорение возникает, если скорость меняет величину, оно равно производной от скорости по времени ,

. (9)

При движении с постоянной по величине скоростью .

Нормальное ускорение

, (10)

- радиус кривизны траектории в данной ее точке. Радиус кривизны равен радиусу окружности, дуга которой совпадает с участком траектории.

Для траектории, представляющей собой прямую линию, и . Т.е. нормальное ускорение возникает только при искривлении траектории движения, когда вектор скорости меняет свое направление.

Если траектория точки – окружность, то радиус кривизны равен радиусу окружности, , и .

Тангенциальное ускорение направлено по касательной к траектории; направление совпадает с направлением вектора скорости при ускоренном движении и противоположно ему при замедленном. Нормальное ускорение перпендикулярно и направлено в сторону вогнутости траектории (рис.2). Т.к. векторы и перпендикулярны, то величина полного ускорения

. (11)

 

 

При координатном способе задания движения, чтобы определить ускорение, сначала вычисляют его проекции на оси x,y,z

, , . (12)

Величина ускорения в этом случае

. (13)

 

 

Вращательное движение, угловая скорость, угловое ускорение (их величина и направление). Связь линейных и угловых характеристик.

 

Вращательным называется движение, при котором все точки тела движутся по окружностям, центры которых лежат на одной прямой – оси вращения.

а) Угловая скорость .

Быстрота вращения характеризуется угловой скоростью «омега», которая равна производной от угла поворота тела по времени

, (16)

 

Частота оборотов равна числу оборотов, сделанных за единицу времени,

, (17)

- число оборотов за время . Т.к. за один оборот тело поворачивается на угол, равный 2 , то и

. (18)

Период вращения - это время, за которое тело совершает один оборот. Т.к.

,

то , . (19)

рад/с, об/с, с.

 

б) Угловое ускорение .

Угловое ускорение «эпсилон» равно производной от угловой скорости по времени ,

, (20)

- изменение угловой скорости за время . .

Векторы и направлены по оси вращения тела; вектор угловой скорости направлен в сторону хода правого винта при вращении винта в направлении вращения тела (рис.3). При ускоренном вращении тела направления векторов и совпадают, при замедленном – противоположны.

 

Связь линейных и угловых характеристик.

Если точка тела отстоит от оси вращения на расстоянии , то за время она проходит путь

.

Скорость точки , или

. (21)

При вращении тела тангенциальное ускорение его точки

. (22)

Нормальное ускорение точки тела , или

. (23)

Полное ускорение, как указывалось ранее, определяют по формуле

Гравитационная сила.

Две точечные массы и , расположенные на расстоянии друг от друга, притягиваются с силой

, (27)

=6,67·10-11 м3/(кг·с2) – гравитационная постоянная.

 

2. Сила тяжести.

Силой тяжести тела массой называется сила притяжения его к Земле

, (28)

– ускорение свободного падения.

Вследствие суточного вращения Земли и несферичности ее формы величина различается от 9,78 м/с2 на экваторе до 9,83 м/с2 на полюсах. В среднем на поверхности Земли

=9,8 м/с2,

и - масса и радиус Земли.

На высоте над поверхностью Земли

. (29)

 

Вес тела.

Вес представляет собой силу, с которой тело действует на горизонтальную опору или на подвес.

По величине вес и сила тяжести совпадают только в том случае, если опора неподвижна. Например, вес тела, находящегося в движущемся вверх с ускорением лифте, превышает его силу тяжести.

Сила трения.

При скольжении тела действующая на него сила трения

, (30)

- коэффициент трения, - сила реакции опоры (рис. 4).

 

Сила упругости.

Сила упругости, действующая на тело со стороны деформированной (сжатой или растянутой) пружины, равна по величине

, (31)

- коэффициент упругости (жесткость) пружины, - величина деформации пружины.

 

 

Работа силы.

Работа , выполняемая силой при малом перемещении тела, определяется следующим образом

, (52)

или

,

- угол между направлениями силы и перемещения. Если сила перпендикулярна перемещению , т.е. , то работа силой не совершается, т.к. .

Полная работа на пути

. (53)

Если тело движется прямолинейно и действующая на тело сила постоянна, то есть и не меняются, то работа силы на пути равна

. (54)

Единица измерения работы Дж (Джоуль).

  • Работу силы тяжести можно подсчитать по упрощенной формуле

, (55)

- величина перемещения тела вдоль действия силы тяжести, «» выбирается при движении тела вниз, «-» - при движении тела вверх.

· Работа силы упругости равна

, (56)

- коэффициент упругости пружины, и - ее начальная и конечная деформации.

Силы, работа которых не зависит от траектории движения тела, а определяется его начальным и конечным положением, называются консервативными. В механике к таким силам относятся сила тяжести и сила упругости .

Мощность представляет собой работу, произведенную в единицу времени, т.е.

, (57)

где - работа, совершенная за время . Единицей измерения мощности является Ватт (Вт).

 

7. Кинетическая энергия для материальной точки (поступательно движущегося тела). Потенциальная энергия. Потенциальная энергия тела под действием силы тяжести, силы упругости. Теорема о кинетической энергии. Закон сохранения механической энергии.

Механическая энергия.

Энергия является мерой способности тел совершать работу. Механическая энергия складывается из кинетической и потенциальной. Первая обусловлена движением тела, вторая - видом сил, действующих на тело и положением тела в пространстве.

Для материальной точки и поступательно движущегося тела кинетическая энергия равна

, (60)

Потенциальной энергией обладают тела, находящиеся под действием консервативных сил. Если тело перемещается консервативными силами из точки 1 в точку 2, то изменение потенциальной энергии тела определяется как работа этих сил

. (62)

Из (62) можно найти только изменение потенциальной энергии, ее величина может быть определена лишь с точностью до постоянного слагаемого. Поэтому начало отсчета потенциальной энергии может быть выбрано произвольно.

Консервативная сила по величине равна скорости изменения потенциальной энергии в направлении действия силы,

. (63)

Знак минус в уравнении (63) отражает тот факт, что консервативная сила всегда направлена в сторону убыли потенциальной энергии.

Если тело находится под действием силы тяжести, его потенциальная энергия

, (64)

- высота расположения тела над уровнем отсчета.

Если на тело действует сила упругости, его потенциальная энергия

, (65)

- величина деформации пружины.

 

Работа момента силы.

При вращении, когда тело поворачивается на малый угол , момент силы совершает работу

. (58)

При повороте на угол работа равна

.

Если момент силы не зависит от угла поворота, то

.

 

Условия равновесия тел.

Из 2-го закона Ньютона и основного уравнения динамики вращательного движения следуют условия равновесия тел: для покоящегося тела

1) сумма действующих на тело сил должна быть равной нулю,

,

или, если использовать проекции сил, то

и ; (46)

2) сумма моментов сил относительно любой точки тела должна быть равна нулю

. (47)

 

Давление

, Па (Паскаль). (69)

сила, действующая перпендикулярно площадке .

 

Законы гидростатики.

1. Закон Паскаля. Давление, оказываемое на жидкость, передается во все ее точки, по всем направлениям, без изменения.

2. Гидростатическое давление. Гидростатическим называется давление, обусловленное весом жидкости. Величина гидростатического давления

, (70)

плотность жидкости, - ускорение свободного падения, - высота столба жидкости. Уровни равного давления в жидкости всегда горизонтальны.

3. Закон Архимеда. На тело, погруженное в жидкость (газ), действует выталкивающая сила Архимеда

, (71)

плотность жидкости, - ускорение свободного падения, объем тела, погруженного в жидкость.

 

 

Уравнение Бернулли.

Жидкость называется идеальной (невязкой), если можно пренебречь силами трения между ее слоями.

 

Для идеальной жидкости при ламинарном течении выполняется уравнение Бернулли

= , (73)

и - статическое давление (давление жидкости на площадку, расположенную вдоль линии тока) в сечениях 1 и 2 трубки тока (рис. 8);

и - динамическое давление в этих сечениях, обусловленное движением жидкости (кинетическая энергия единицы объема жидкости в сечениях 1 и 2);

и - высоты, на которых расположены сечения; плотность жидкости;

и - потенциальная энергия единицы объема жидкости в сечениях 1 и 2.

 

Механика

Скорость и ускорение материальной точки. Нормальное и тангенциальное ускорения, их величина и направление.

 

При прямолинейном движении с постоянной скоростью, скорость определяется как

.

Если скорость меняет величину или направление, ее можно считать постоянной только на малом промежутке времени . Поэтому в каждой точке траектории скорость определяется как отношение пути , пройденного за малое время , к этому временному интервалу (т.е. как производная от пути по времени ),

. (1)

Соответственно путь , пройденный за время , равен интегралу от скорости по времени

. (2)

Скорость - вектор, направленный по касательной к траектории движения.

Расстояние и величина перемещения , пройденные за малое время, совпадают, = . При вектор , секущий траекторию, становится касательным к ней вектором , т.е. направлен по скорости . Поэтому в векторном виде скорость записывают как

. (3)

 

Средней скоростью движения за время называется величина

. (4)

Движение материальной точки также описывают с помощью ее координат . В этом случае, чтобы определить скорость , сначала вычисляют проекции скорости на оси x,y,z, которые равны производным от соответствующих координат по времени

, , . (5)

Тогда величина скорости

. (6)

 

Ускорение точки.

Ускорение характеризует быстроту изменения скорости

, (7)

- изменение вектора скорости за малый промежуток времени .

Ускорение можно разложить на тангенциальное (его еще называют касательным) ускорение и нормальное (центростремительное) ускорение ,

. (8)

Тангенциальное ускорение возникает, если скорость меняет величину, оно равно производной от скорости по времени ,

. (9)

При движении с постоянной по величине скоростью .

Нормальное ускорение

, (10)

- радиус кривизны траектории в данной ее точке. Радиус кривизны равен радиусу окружности, дуга которой совпадает с участком траектории.

Для траектории, представляющей собой прямую линию, и . Т.е. нормальное ускорение возникает только при искривлении траектории движения, когда вектор скорости меняет свое направление.

Если траектория точки – окружность, то радиус кривизны равен радиусу окружности, , и .

Тангенциальное ускорение направлено по касательной к траектории; направление совпадает с направлением вектора скорости при ускоренном движении и противоположно ему при замедленном. Нормальное ускорение перпендикулярно и направлено в сторону вогнутости траектории (рис.2). Т.к. векторы и перпендикулярны, то величина полного ускорения

. (11)

 

 

При координатном способе задания движения, чтобы определить ускорение, сначала вычисляют его проекции на оси x,y,z

, , . (12)

Величина ускорения в этом случае

. (13)

 

 



Поделиться:


Последнее изменение этой страницы: 2016-08-12; просмотров: 4184; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.152.242 (0.112 с.)