Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Магнитотвердые и магнитомягкие материалы.↑ ⇐ ПредыдущаяСтр 3 из 3 Содержание книги
Поиск на нашем сайте
Магнитомягкие материалы способны намагничиваться до насыщения в слабых полях, высокая? и малые потери на перемагничивание. Условно к магнитомягким относят материалы с Нс<800 А/м. Применяются в основном в качестве магнитопроводов дросселей, трансформаторов, электромагнитов, электрических машин и т.д. Магнитомягкими магнитными материалами являются: 1) электротехническое железо и стали (низкоуглеродистые и кремнистые); 2) кристаллические сплавы на основе Fe-Ni - в т.ч. бинарные (пермаллои) и легированные Мо (суперпермаллои), Mn (муметалл), Сr, Ti, Nb, Сu, Аl (изопермы); на основе Fe-Co с добавками V (пермендюры); на основе Fe-Ni-Co с добавками Mn и Сr (перминвары); на основе Fe-Al (алферы, алфенолы) и Fe-Si-Al (алсиферы, сендасты и др.); 3) аморфные сплавы на основе Fe (типа 80% Fe, 20% В), Fe-Ni (типа 40% Fe, 40% Ni, 20% SiB), Co-Fe (типа 70% Co, 5% Fe, 10% Si, 15% B), Co-Zr, Co-Zr-Mo; 4) ферриты-шпинели, ферриты-гранаты, ортоферриты (со структурой перовскита); 5) композиты ферромагнитного металлического порошка (карбонильное железо, пермаллой. алсифер) с диэлектрическим связующим на основе смол (напр., шеллака), полистирола, жидкого стекла, талька и т.п. (магнитодиэлектрики). Магнитотвердые материалы отличаются большой удельной энергией, которые тем больше, чем больше остаточная индукция Br и коэрцитивная сила Нс материала. К магнитотвердым относят материалы с Нс> 4 кА/м. Используются главным образом для постоянных магнитов. 1. Стали, закаливаемые на мартенсит (углеродистые, легированные Сr, W, Со). Они обладают сравнительно малыми Hс (4-12 кА/м) и Wмакс (0,6-1,4 кДж/м3). 2. Диффузионно-твердеющие сплавы на основе Fe-Ni-Аl (ални) с добавками Со, Сu, Ti и др. 3. Дисперсионно-твердеющие сплавы Fe-Ni-Сu (кунифе), Co-Ni-Cu (кунико), Fe-Co-V (викаллой), Fe-Cr-Co и др. По своим магнитным свойствам они близки к диффузионно-твердеющим сплавам, но менее хрупки и подвергаются обработке давлением, а некоторые - и термомагнитообработке 4. Сплавы с использованием благородных металлов (напр., Pt, Ir, Pd) с высокими значениями коэрцитивной силы (до 400 кА/м). Применение их также весьма ограниченно из-за высокой стоимости 5. Бариевые и стронциевые ферриты с гексагональной кристаллической решеткой и кобальтовый феррит со структурой шпинели. Характеризуются сравнительно низкими значениями Вr (0,19-0,42 Тл), весьма высокими Hc (130-350 кА/м) и Wмакс (3-18 кДж/м3), температурной стабильностью (вплоть до 700 К), высоким удельным электрическим сопротивлением. Последнее обусловливает их широкое применение при высоких частотах переменного поля. Достоинство всех магнитотвердых ферритов - высокое удельное электрическое сопротивление, позволяющее применять их при высоких частотах переменного поля.
Потери в магнитопроводе. Классификация потерь. При работе электрической машины в ее активных материалах возникают потери энергии. К ним относятся магнитные потери в стали магнитопровода и электрические потери в проводниках обмоток. При вращении машины возникают механические потери, вызываемые трением. Кроме того, имеют место добавочные потери в обмотках и в стали магнитопровода. Магнитные потери. Явление электромагнитной индукции связано с изменением магнитного потока, вследствие чего на участках магнитопровода возникают потери на перемагничивание и вихревые токи. Потери на перемагничивание зависят от характера перемагничивания, которое может быть вращательным (возникающим при вращении стального магнитопровода в магнитном поле), циклическим (производимое переменным током) и статическим (при медленном изменении намагничивающего тока в определенных пределах). Потери на вихревые токи в листах стали зависят от свойств материала и толщины листов. Для снижения этих потерь уменьшают толщину листов и изолируют их друг от друга. При расчете потери на перемагничивание и вихревые токи обычно не разделяют. Потери в стали рассчитывают отдельно для каждого участка магнитопровода, имеющего одинаковую магнитную индукцию. Определив значение магнитной индукции, находим удельные потери на 1 кг массы pc = p0 () 1.3 B2,
Где po – удельные магнитные потери (при индукции В=1,0 тл и частоте f = 50 гц), значение которых зависит от сорта стали и толщины листа (po = 1,2 / 4 вт/кг); f – частота перемагничивания, гц; В – индукция на участке магнитопровода, тл. Общие потери в стали pc = ; Здесь pci – удельные потери i-го участка магнитопровода; Gi – вес i-го участка магнитопровода. Электрические потери. При прохождении тока по проводникам возникают потери энергии. В машинах имеют место следующие виды электрических потерь: 1) потери в проводниках обмотки якоря Pa = m ra; где Ia – действующее значение тока в обмотке, a; ra – активное сопротивление обмотки якоря, определенное с учетом нагрева, ом; m – число фаз (для машин постоянного тока следует принять m=1); 2) потери в отмотке возбуждения Pn = rB; Где IB – ток обмотки возбуждения, a; rB – сопротивление обмотки возбуждения, определяемое с учетом нагрева, ом; 3) потери в щеточных контактах Pщ = 2 ΔUщIщ; Где ΔUщ – падение напряжения в щелочном контакте Iщ – ток в щетках, a. Общие электрические потери равны сумме Активное сопротивление обмоток микромашин является относительно большим, поэтому электрические потери в микромашинах имеют относительно большую величину, чем в других электрических машинах.
|
||||
Последнее изменение этой страницы: 2016-08-12; просмотров: 390; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.38.184 (0.008 с.) |