Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Самоубийство со злым умыслом

Поиск

 

Резистентные клетки приносят своим товарищам немалую жертву — они отказываются от шанса быстро размножиться. Но когда E. coli производит колицины — химическое оружие для уничтожения бактерий соперничающих штаммов, они приносят значительно большую жертву. Ради процветания родичей они накачивают себя ядом и лопаются.

Химическая война в жизни E. coli — это оборотная сторона альтруизма. Первоначально Уильям Гамильтон утверждал, что естественный отбор способен подхватить и закрепить жертву одной особи ради того, чтобы ее родственники могли лучше размножаться. В 1970 г. Гамильтон признал, что естественный отбор способен также благоприятствовать жертвенному поведению особи ради того, чтобы пострадали чужаки; этот неприятный вид альтруизма Гамильтон назвал злым умыслом. Он всегда утверждал, что подобное явление — редкость и оказывает незначительное влияние, поскольку из его уравнений следовало, что злой умысел подхватывается естественным отбором только в очень маленьких популяциях. Однако в 2004 г. Энди Гарднер и Стюарт Уэст из Эдинбургского университета продемонстрировали, что, если неродственные особи яростно конкурируют со своими непосредственными соседями, эта местная конкуренция создает такие же условия для эволюции, какие существуют в маленьких популяциях.

Так, образ жизни E. coli способствует эволюции злоумышленников. Бактерии живут в тесном, перенаселенном пространстве кишечника и конкурируют между собой за один и тот же ограниченный ресурс сахаров. Отдельный микроорганизм приносит в жертву собственное репродуктивное будущее и становится бомбистом- самоубийцей, но его колицины уничтожают множество конкурентов, что обеспечивает благополучие его собственным близким родичам. Производителем колицина с равной вероятностью может стать любая бактерия. То, какие именно особи в ответ на голодание включат ответственные за производство колицина гены, определяется, как и в случае с резистентностью, случайными помехами, которым подвержен процесс производства белков. Иначе говоря, груз ответственности ложится на весь коллектив.

Злой умысел, как позволяют предположить сейчас некоторые эксперименты, может подтолкнуть E. coli к большему разнообразию. Биологу из Массачусетского университета в Амхерсте Маргарет Райли и ее коллегам удалось пронаблюдать ход этой гонки вооружений в экспериментах на E. coli — как в чашках Петри, так и в кишечнике лабораторной мыши. Иногда — достаточно редко — ген, кодирующий синтез противоядия, мутирует и начинает производить более мощный антитоксин. В этом случае он помимо защиты E. coli от собственного колицина начинает защищать ее и от «чужих» колицинов, произведенных бактериями других штаммов. Такая мутация, естественно, дает бактерии серьезное эволюционное преимущество — ведь теперь она может выдержать атаки неприятеля, убивающие других представителей того же штамма.

Мощное противоядие открывает дорогу еще в одном направлении. Вторая мутация, на этот раз в кодирующем колицин гене, изменяет формулу колицина. От мутантного токсина начинают гибнуть родичи бактерии, по — прежнему обладающие противоядием лишь от прежнего колицина. Но сам микроорганизм, синтезирующий новый колицин, выживает благодаря своему мощному противоядию. Так носители нового колицина и противоядия поголовно уничтожают своих родичей. Злой умысел действует уже не только на чужих, но и на своих.

Появление новых колицинов стимулирует появление у других штаммов новых противоядий. Точно так же новые противоядия стимулируют появление новых колицинов. Но за все это вооружение E. coli приходится платить немалую цену. На производство колицинов и противоядий — а их молекулы достаточно велики для бактерий — приходится тратить дополнительную энергию. Новый колицин может оказаться еще более смертоносным, чем его предшественник, но в то же время бактерия может потратить на его производство все силы. Если некая мутация лишает бактерию возможности производить колицины — но оставляет возможность им сопротивляться, — то избавленный от этой нагрузки микроорганизм сможет направить дополнительную энергию на продолжение рода. Такой безколициновый штамм быстро распространится, победив в конкурентной борьбе производителей токсина.

Когда производители колицинов полностью вытесняются из популяции, вдруг выясняется, что их яды больше не представляют опасности для других бактерий. Производство противоядий становится напрасной тратой энергии: ведь токсинов рядом нет, и защита E. coli не нужна. В этом случае естественный отбор начинает благоприятствовать пацифистам — микроорганизмам, которые не производят ни колицинов, ни противоядий.

Но как только в популяции начинают преобладать пацифисты, у производителей колицинов появляется реальный шанс на вторжение: они легко могут уничтожить беззащитные штаммы и захватить пищу. Круг замыкается.

Подобные циклы возникают в ходе эволюции спонтанно. Их можно сравнить с играми, в которых игроки используют разные стратегии. В случае E. coli такой стратегией может быть производство какого‑то конкретного колицина или, наоборот, жизнь вообще без ядов и противоядий. А например, у самца морского слона в число стратегий могут входить как сражения с другими самцами за право спариться с самкой, так и амурные встречи украдкой, пока не видит местный доминантный самец. В некоторых случаях одна из стратегий может оказаться эффективнее остальных. Иногда две стратегии мирно сосуществуют. К примеру, самцы, готовые сражаться за самку, и самцы — тихони могут присутствовать у одного и того же вида. Бывает также, что эффективность различных стратегий со временем меняется.

Ученые иногда сравнивают такую циклическую эволюцию с известной игрой «Камень, ножницы, бумага». В этой игре каждый участник может показать один из трех символов: сжатый кулак — камень, указательный и средний палец — ножницы, раскрытая ладонь — бумага. Игрок выигрывает или проигрывает в зависимости от того, что сделает его противник. Камень может затупить ножницы, ножницы режут бумагу, а бумага оборачивает камень. Когда в популяции преобладает одна стратегия (скажем, «бумага»), естественный отбор подхватывает «ножницы». Но стоит «ножницам» взять верх и захватить лидерство, как естественный отбор начинает благоприятствовать «камню», затем вновь «бумаге» и далее по кругу.

К примеру, пятнистобокая игуана, обычный обитатель калифорнийского побережья, очень наглядно демонстрирует эволюционный процесс такого типа. Игуаны — самцы отличаются ярко окрашенным горлом, которое может быть оранжевым, желтым или голубым. Крупные оранжевогорлые самцы — большие забияки; каждый из них захватывает значительную территорию и заводит себе целый гарем из самок. Игуаны с голубым горлом обычно бывают среднего размера; они защищают небольшую территорию и заводят несколько самок, которых при этом тщательно охраняют. Мелкие желтогорлые самцы шныряют всюду в поисках партнерши, пользуясь тем, что внешне они напоминают самок. Каждый тип самцов может взять верх в конкуренции с одним из двух остальных типов, но проигрывает другому. Самцы с желтым горлом вполне способны перехитрить оранжевогорлых самцов — ведь их территории очень велики, за всем не уследишь. Против голубогорлых самцов, однако, такая стратегия не работает, потому что они всегда держатся поблизости от самок и при этом крупнее желтогорлых. Но самцы с голубым горлом проигрывают оранжевогорлым, поскольку сильно уступают им в размерах.

За шесть лет каждый тип самцов пятнистобокой игуаны проходит полный популяционный цикл. Когда преобладают крупные оранжевогорлые самцы, естественный отбор благоприятствует мелким желтогорлым, которые тайком спариваются с их самками. Но как только желтогорлые самцы получают распространение, включается режим наибольшего благоприятствования для голубогорлых середнячков, которые вполне способны разогнать мелюзгу и наплодить множество детенышей. А со временем естественный отбор вновь начинает поддерживать крупных оранжевогорлых особей.

Ученые из Стэнфорда и Йеля в 2003 г. открыли описанную выше версию циклической эволюции у E. coli. Они высказали предположение, что такой вариант игры «Камень, ножницы, бумага» особенно распространен. Дело в том, что химическое оружие в живой природе используется очень часто, особенно среди организмов, которые слишком малы или слишком малоподвижны, чтобы применять оружие другого сорта. Деревья травят непрошеных гостей — насекомых, кораллы отпугивают тех, кто любит на них попастись, люди и другие животные производят антитела для борьбы с патогенными микроорганизмами. И гонка вооружений, то есть создание все новых ядов и способов защиты от них, и возникновение дополнительных факторов в игре способствуют расширению разнообразия. Ученым давно известно, что в кишечнике долгое время может господствовать один — единственный штамм E. coli, который затем без видимых внешних причин исчезает, уступая место другому, более редкому штамму. Вполне может оказаться, что подобные случаи объясняются не чем иным, как колициновыми войнами.

Возможно, E. coli способна спонтанно создать гармоничную пищевую сеть. Но когда речь идет о формировании пресловутого дарвиновского заросшего берега, война может оказаться не худшим инструментом, чем мир.

 

Смерть приходит к каждому

 

Не так давно E. coli считалась бессмертной. Речь не шла о том, что бактерия как таковая неуязвима и не может умереть. Бактерии, разумеется, умирают, причем по самым разным причинам — любую из них может съесть хищное простейшее, она может погибнуть от отсутствия пищи в голодную пору или лопнуть, как наполненный водой воздушный шарик, из‑за колицина, повреждающего ее мембрану. Но десятки лет непрерывных наблюдений за E. coli убедили ученых в том, что смерть — вовсе не неизбежность. В благоприятных условиях E. coli способна вечно оставаться молодой. В этом заключалось по крайней мере одно фундаментальное отличие E. coli от человека. Человеческое тело стареет по достаточно жесткому расписанию. Чем дальше, тем больше вирусов и бактерий проникает в наше тело в обход иммунной системы, которая откровенно теряет бдительность. Мозг съеживается, кости становятся хрупкими, кожа обвисает.

Джорджа Уильямса вопрос о том, почему мы так верно и одинаково соскальзываем в старость и дальше к смерти, захватил с головой. Ему было так интересно, что он решил документально зафиксировать собственное старение. Начиная с 52 лет, раз в год он приходил на стадион рядом с домом на Лонг — Айленде и проверял, за какое время он может пробежать 1700 м. Иногда ему удавалось сделать это чуть быстрее, чем в прошлом году, но в среднем за 12 лет его результаты заметно снизились. Почему, задавал себе вопрос Уильямс, спад происходит так неуклонно? Если смерть неизбежна, то почему нельзя оставаться молодым и сильным до самого конца? Почему конец этот не может быть внезапным? А если уж стареть обязательно, то почему процесс этот подчиняется именно таким закономерностям и следует именно такой кривой? Почему он не бегал так же медленно в двадцать, как в пятьдесят?

В конце концов, в природе Уильямс видел множество примеров обратного. Некоторые двустворчатые моллюски могут жить до 400 лет. На другом конце шкалы находится лосось, который в расцвете сил возвращается к месту своего рождения, находит себе пару, заводит потомство — затем стареет с катастрофической скоростью и умирает. За несколько недель лосось стареет сильнее, чем человек за несколько десятилетий.

В 1950–е гг., будучи студентом — старшекурсником, Уильямс слышал объяснения преподавателей о том, что смерть благотворна для вида. Старые должны уступать дорогу молодым, иначе вид вымрет. Уильямсу еще тогда казалось, что это полная чепуха. Вместо этого он пытался понять, как естественный отбор на индивидуальном уровне может благоприятствовать старению. Уильямс утверждал, что старость может быть побочным эффектом действия тех генов, которые в юности обеспечивают организму преимущества. До тех пор пока преимущества этих генов перевешивают наносимый ими вред, естественный отбор будет способствовать их распространению. По иронии судьбы рак, снижение зрения, слабость и другие старческие болезни тоже могут быть результатом естественного отбора.

Уильямс утверждал, что любой организм в течение жизни не раз оказывается перед эволюционным выбором: к примеру, сколько энергии затратить на взросление и созревание, прежде чем обрести способность завести детей, или сколько вложить в воспитание отпрысков, прежде чем заняться поисками нового партнера. По идее, естественный отбор должен достичь какого‑то баланса интересов. Уильямс высказал предположение, что животные могут отслеживать изменение этих факторов на протяжении своей жизни и соответственно изменять свое поведение, подобно тому как инвестор решает, какие акции сохранить, а какие продать.

За последние 40 лет теория Уильямса развилась в настоящую науку о старении, причем науку экспериментальную. Сегодня ученые могут определить, какие виды стареют и почему. В 2005 г. ученые решили для примера (одного из сотен) исследовать нерку, которая ежегодно возвращается метать икру в речку Пик — Крик на Аляске. Эта лососевая рыба каждый год приплывает в родные края в июле и августе. После спаривания самка нерки сразу же выбирает место для откладывания икры и роет в галечном дне ямку для гнезда. Отложив в ямку икру, она прикрывает ее сверху и охраняет кладку от других самок, которые могли бы позариться на готовое гнездо и захватить его для собственных икринок.

Лосось из Пик — Крик впрямую сталкивается именно с тем выбором, о котором говорил Уильямс. Покидая океан, чтобы подняться по реке вверх к местам икрометания, рыбы полностью прекращают питаться. В результате имеющееся у них на тот момент ограниченное количество энергии они должны оптимально распределить и потратить на необходимые вещи, которые им предстоит сделать перед смертью. Самкам какое‑то количество энергии придется пустить на развитие репродуктивной системы — ведь необходимо будет сформировать и отложить икру. Часть энергии уйдет на поддержание тела, чтобы можно было прожить достаточно долго и успеть защитить свою кладку от других лососей. Конец известен: кончится энергия, кончится и жизнь.

Исходя из эволюционной логики, ученые предсказали, что лососи, пришедшие в Пик — Крик в начале сезона, проживут дольше, чем те, кто придет позже. Самке, которая успеет отметать икру в июле, придется несколько недель сражаться за то, чтобы отложенные икринки остались целы и невредимы. Если такая рыбина вложит всю энергию в икринки и погибнет рано, другие лососи захватят приготовленное ей гнездо, и ее генов не будет в следующем поколении лососей. С другой стороны, если приплывшая позже вложит всю энергию в долгую жизнь, такая трата окажется напрасной — рыбина останется жить, когда остальные погибнут и охранять кладку будет не от кого. Иными словами, опаздывающим следует вкладывать энергию в производство дополнительных икринок, а долгая жизнь им ни к чему.

Когда исследователи сравнили продолжительность жизни лососей, прибывших в районы нереста в разное время, их предсказания вполне оправдались. Те, кто приплыл раньше, прожили в речке в среднем по 26 дней, тогда как припоздавшие — всего по двенадцать. Первые разделили энергию между икринками и собственным телом примерно поровну, а последние потратили на формирование икринок — яиц примерно вдвое больше энергии, чем на поддержание жизни собственного тела.

Предсказания Уильямса работают не только для лососей, но и для плодовых мушек, уксусных нематод, рыбок гуппи, лебедей, людей и многих других видов живых существ. Однако до недавнего времени специалисты по старению считали, что к E. coli все вышесказанное не относится. Казалось, что для нее выбора между долгой жизнью и продолжением рода попросту не существует. У E. coli нет детей и родителей. Отдельная E. coli просто копирует собственную ДНК и делится надвое; возникает две новые особи. Родитель превращается в собственных потомков. Голод может замедлить деление бактерии, а химическое оружие или другие поражающие факторы — попросту убить. Но, если бактерию оставить в покое и снабжать достаточным количеством пищи, она будет размножаться до бесконечности, и каждый новый микроб будет таким же здоровым, как его предки.

По крайней мере так думали ученые, пока Эрик Стюарт — микробиолог, работающий в настоящее время в Северо — Восточном университете, не решил повнимательнее присмотреться к давно знакомой E. coli. Вместе с коллегами он соорудил что‑то вроде рая для E. coli — какой мог бы появиться в воспаленном воображении какой — ни- будь бактерии. Ученые поместили одиночный микроорганизм на покрытую агаром пластинку, прикрыли ее сверху стеклом и запечатали боковые швы силиконовым герметиком. Выбранная для эксперимента бактерия была носителем светоизлучающего гена, что делало наблюдение за ней через верхнее стекло простым и удобным. Пластинку установили под микроскопом, а весь аппарат поместили в бокс с температурой, соответствующей температуре кишечника здорового человека.

Счастливая E. coli питалась и делилась. Ее потомки распределились по пластинке слоем толщиной в одну бактерию. Через определенные временные интервалы камера, установленная на микроскопе, автоматически делала снимок светящейся колонии. Сравнивая последовательные изображения, Стюарт мог проследить судьбу любой веточки подопытной династии E. coli. Он мог определить, сколько времени потребовалось на деление каждой бактерии, а затем двум ее отпрыскам, а затем четырем внукам… Считая, что все бактерии генетически одинаковы и живут в одинаковых идеальных для роста условиях, можно было бы предположить, что и расти они будут с одинаковой скоростью. Однако экспериментальные данные этого не подтвердили. Некоторые особи росли заметно медленнее своих «братьев», а со временем их потомки все сильнее отставали в росте.

Некоторые бактерии, как обнаружил Стюарт, старели. Каждый раз при делении E. coli выстраивает себе кольцо на талии, и это кольцо постепенно стягивается и делит клетку пополам. Одновременно она производит две новые крышечки, назначение которых — прикрыть концы дочерних клеток. Те при делении тоже образуют новые крышечки. Через несколько поколений у одних бактерий оказываются старые кончики, а у других — новые. Числа на диаграмме показывают, сколько поколений назад была создана соответствующая крышечка.

 

Стюарт обнаружил, что, чем старее крышечки на бактерии, тем медленнее она растет. Он смог проследить за жизнью своих бактерий на протяжении всего лишь семи поколений, но, согласно его оценке, деление стареющих E. coli замедляется достаточно быстро, а через сто поколений вообще прекращается.

Для объяснения полученных данных вновь может пригодиться волшебное кольцо Уильямса — Гамильтона. Должно быть, старение дает E. coli какие‑то эволюционные преимущества по сравнению с бессмертием. Возможно, все дело в том неизбежном ущербе, который со временем терпит любая бактерия. Белки изменяют форму, гены мутируют. При делении бактерия может либо передать все поврежденные белки и гены одному из потомков, либо поделить их на двоих. От поколения к поколению изменения накапливаются и ложатся на «плечи» новых бактерий тяжким грузом. Разумеется, E. coli способна исправить повреждения — и, кстати говоря, многое исправляет. Ремонтные работы, однако, тоже имеют свою цену. Бактерии приходится тратить на это много энергии и питательных веществ. Но если она потратит все ресурсы на ремонт, то непременно проиграет в конкурентной борьбе какой‑нибудь другой, менее обремененной губительным наследием особи.

Существует и другой способ бороться с накоплением дефектов — их всех можно сбросить в одно место. У E. coli такими свалками служат полюса клетки. Бактерия почти не тратит сил на ремонт сложенного на полюсах, и при делении каждому из потомков достается один старый полюс с накопленными повреждениями и один новый, только что сформировавшийся с противоположной стороны. Поколения меняются, и со временем некоторые полюса становятся очень старыми и, как полагают ученые, накапливают в себе множество поврежденных белков. E. coli, утверждает Стюарт, вместо того чтобы стремиться к совершенству, делает из своих полюсов настоящие свалки. Весь этот мусор достается одному из ее потомков, зато другой рождается свободным от груза прошлого и может спокойно размножаться.

Так исчезло то, что прежде казалось серьезным нарушением правила Жака Моно. Мы вновь видим у E. coli такую же стратегию, какую используем сами. Когда из оплодотворенной человеческой яйцеклетки начинает развиваться зародыш, в нем очень скоро выделяются два типа клеток: клетки, которые в принципе способны дать начало новому человеку (яйцеклетки и сперматозоиды), и все остальные. Мы тратим огромное количество энергии на защиту яйцеклеток и сперматозоидов от разрушительного действия времени и гораздо меньше на защиту остальных клеток нашего тела. Этот бессознательный выбор позволяет нашим отпрыскам продолжать жить после нашей смерти. И человек, и E. coli за привилегию прожить жизнь должны расплатиться смертью.

 

 

Глава 7. Дарвин в аптеке

 

Жизнь против жизни

 

Бактерии, живущие в чашке на моем столе, оказались далеко от родного дома. Их предки покинули тело больного дифтерией калифорнийца 85 лет назад и никогда уже не возвращались в традиционное место обитания — человеческий кишечник. Их перенесли как бы в другое измерение — в мир колб и холодильников, центрифуг и рентгеновский лучей. Эти лабораторные существа наслаждались странным комфортом, пировали, насыщались аминокислотами и сахаром — и эволюционировали на протяжении тысяч поколений. Они научились быстро размножаться и потеряли способность длительное время жить в человеческом кишечнике. Бактериям удается избежать вымирания только потому, что они так дороги биологам, которые теперь заботливо переносят их из колбы в холодильник, а из холодильника в инкубатор.

Дикие родичи наших лабораторных любимцев все эти 85 лет жили своей жизнью. Они продолжали колонизацию кишечников и тоже эволюционировали. Бактерии, населяющие наши внутренности сегодня, не идентичны тем, что обитали в человеческом кишечнике в 1920 г. И причина значительной части происшедших с кишечной палочкой изменений — мы сами.

Самый очевидный способ, при помощи которого мы заставили E. coli измениться, заключается в том, что мы стали бороться с инфекциями при помощи лекарств. E. coli, как и другие бактерии, отозвалась на наши лекарства стремительным, почти взрывным развитием. Сегодня кишечная палочка способна сопротивляться лекарствам, которые в прежние времена без труда расправились бы с ней. Ученым приходится затрачивать кучу усилий в поисках новых лекарств взамен тех, что перестали действовать, и нет никаких оснований ожидать, что у E. coli и у других бактерий не появится резистентность и к ним.

Пока ученые наблюдают, как E. coli эволюционирует в лабораторных условиях, человечество в целом наблюдает за ходом грандиозного незапланированного эксперимента по эволюции E. coli, охватившего всю планету. Подобно лабораторным экспериментам, появление любого резистентного штамма E. coli снабжает нас новой информацией о механизмах эволюции. Резистентность может развиться обычным путем — через случайные мутации и естественный отбор. Но в некоторых отношениях E. coli не укладывается в традиционную схему. Ряд исследователей считает, что ход эволюции E. coli свидетельствует о том, что в зависимости от внешних условий микроорганизм может изменять направленность своих мутаций. И если теория Дарвина основана на представлении о том, что любые организмы наследуют свойства от своих непосредственных предков, то E. coli позаимствовала значительную часть резистентности к антибиотикам у других видов бактерий. Похоже, что бактерии способны запросто обмениваться генами, как визитными карточками. Значение этих открытий не ограничивается тем, что, изучая их, мы попытаемся понять, как бороться с резистентными патогенными микроорганизмами. Не исключено, что именно эти силы формировали жизнь на Земле на протяжении последних 4 млрд лет.

Эпоха антибиотиков началась внезапно, но перед ней была разыграна долгая медленная прелюдия. Традиционные целители давно знали, что плесень способна залечивать раны. В 1877 г. Луи Пастер обнаружил, что можно остановить распространение возбудителя сибирской язвы посредством введения «обычных бактерий». Никто не знал, что именно делают обычные бактерии с бактериями сибирской язвы и каким образом умудряются остановить их распространение, но название было дано: «антибиоз» — антагонистические отношения видов, при которых один организм негативно влияет на другой (или оба негативно влияют друг на друга).

В 1928 г. шотландский бактериолог Александер Флеминг открыл вещество, способное убивать бактерии. Как‑то раз он обнаружил, что одна из чашек Петри в его лаборатории заражена плесенью. Флеминг обратил внимание на один любопытный факт: вблизи плесени бактерий не было. Он провел кое — какие эксперименты и выяснил, что плесень, хотя и способна остановить распространение бактерий, не действует на человеческие клетки. Флеминг выделил синтезируемый плесневыми грибками антибиотик и назвал его пенициллином.

Поначалу пенициллин не произвел на медиков особенного впечатления — да и действительно выглядел как лекарство не слишком многообещающе. С одной стороны, Флеминг мог извлекать его из плесени лишь в крохотных количествах. С другой — вещество оказалось довольно неустойчивым и не могло долго храниться. Понадобилось десять лет, чтобы пенициллин проявил все свои возможности. Говард Флори и Эрнст Чейн из Оксфордского университета придумали, как заставить грибок производить больше пенициллина, и получили его в достаточном для испытаний на мышах количестве. Они заразили мышей стрептококком и ввели некоторым из них пенициллин. Все мыши, которым были сделаны инъекции, выжили, остальные погибли. В 1941 г. Флори и Чейн убедили американские фармацевтические компании принять на вооружение их технологию получения пенициллина и начать его производство в промышленном масштабе. Всего через три года, в 1944 г., раненых солдат союзных войск вылечивали от инфекций, которые лишь годом раньше наверняка убили бы их. Следующие несколько лет были отмечены появлением множества других антибиотиков, в основном выделенных из грибов и бактерий.

Ученые выяснили, что антибиотики убивают бактерии по — разному. Некоторые действуют на ферменты, участвующие в репликации ДНК. Другие, такие как пенициллин, мешают строительству муреинового мешка, из которого формируется оболочка E. coli и других бактерий. Прорехи в мешке приводят к тому, что содержимое микроорганизма, находящееся под высоким давлением, вырывается наружу, и тот лопается. Разумеется, количество антибиотиков, выделяемых разными живыми организмами, ничтожно, но фармацевтические компании начали производить их в невероятных объемах. Они либо выращивали грибы и бактерии в огромных биореакторах, либо синтезировали лекарственные препараты искусственным путем. Чтобы произвести антибиотик, содержащийся в одной- единственной таблетке, потребовалась бы работа миллиардов микроорганизмов. В такой концентрированной форме антибиотики оказывали поразительное действие на болезнетворные бактерии. Они не просто ослабляли инфекции. Они помогали полностью от них избавиться, причем почти без клинически значимых побочных эффектов. Казалось, что война против инфекционных болезней внезапно превратилась в увеселительную прогулку.

Но даже в те дни, счастливые дни первых побед, видны были признаки будущих проблем. В какой‑то момент Флори и Чейн обнаружили, что их плесневые культуры подверглись вторжению E. coli. Эти бактерии сумели выжить в пенициллиновом бульоне, потому что обзавелись ферментом, способным разрезать молекулу антибиотика на беспомощные фрагменты.

С началом широкого применения пенициллина микробиологи получили возможность наблюдать, как мутирует E. coli. В 1943 г. Дельбрюк и Лурия показали, что именно мутации спонтанно делают E. coli устойчивой к вирусам. В 1948 г. генетик югославского происхождения Милислав Демерец показал, что с антибиотиками происходит то же самое. Он разводил резистентные штаммы E. coli и патогенного микроорганизма Staphylococcus aureus. Оба вида по мере накопления мутаций становились все более резистентными. В том же году, когда Демерец опубликовал свои результаты, врачи сообщили, что при стафилококковой инфекции пенициллин уже не всегда помогает.

Эти тревожные открытия никак не повлияли на распространение антибиотиков, которые применялись все шире и шире. Сегодня человечество потребляет более 10 000 т антибиотиков в год. По некоторым оценкам, до 1/3 рецептов на антибиотики выписывается необоснованно — реально они не нужны. Так, врачи часто прописывают антибиотики при вирусных инфекциях, хотя в этом случае они попросту бессильны. Фермеры, стремясь увеличить привесы, кормят антибиотиками скот. Но стоимость антибиотиков зачастую выше, чем получаемая от продажи этого мяса прибыль.

Развивались антибиотики, развивалась и резистентность к ним. Многие лекарственные препараты, бывшие когда‑то смертельно опасными для бактерий, сегодня бесполезны. История E. coli вполне типична. Ее резистентные штаммы впервые были зарегистрированы в 1950–е гг. Поначалу лишь небольшая часть E. coli могла противостоять действию какого‑то конкретного антибиотика, но с течением времени резистентные бактерии попадались все чаще. Еще несколько лет — и уже большинство бактерий могло без труда противостоять действию этого лекарства. По мере того как одно лекарство переставало помогать, врачи меняли его на другое, более сильное, с более неприятными побочными эффектами, или на недавно открытый препарат. А еще через несколько лет и это лекарство начинало отказывать. Вскоре появились штаммы E. coli, способные противостоять сразу многим антибиотикам.

У E. coli много способов борьбы с антибиотиками. Так, Флори и Чейн обнаружили, что в ее арсенале имеются секретные ферменты, способные резать пенициллин на безвредные фрагменты. В других случаях белковые молекулы E. coli изменяют форму, так что антибиотикам становится трудно связываться с ними. Бывает и так, что E. coli при помощи особых насосов избавляется от антибиотиков, выбрасывает их из себя. Для каждого волшебного снаряда, который наука припасла для E. coli, бактерия придумала не менее волшебную броню.

 

Лягушачья кожа

 

E. coli приобрела резистентность к антибиотикам практически полностью в «дикой природе», вне поля зрения ученых. Это происходило не в лабораторных колбах, где исследователи могут отслеживать каждую мутацию от поколения к поколению. Ее колбой был весь огромный мир.

Данных, которые ученым удалось собрать, достаточно, чтобы восстановить по крайней мере часть этой истории. Гены, которые сегодня обеспечивают E. coli резистентность к антибиотикам, вовсе не появились из ниоткуда в 1950–е гг. Они происходят от генов, у которых прежде были другие функции. Некоторые из насосов, предназначенных для удаления молекул антибиотика из E. coli, вероятно, развились из насосов, при помощи которых бактерии прежде выпускали наружу сигнальные молекулы. Другие насосы ранее выводили соли желчных кислот, с которыми E. coli встречается в человеческом кишечнике.

Когда бактерии впервые столкнулись с антибиотиками, их насосы, вероятно, плохо справлялись с задачей выведения этих новых странных молекул. Но иногда — очень редко, конечно — гены, отвечающие за строительство насосов, мутировали. Мутантная бактерия была способна выкачивать антибиотики чуть быстрее, чем остальные. До появления современной медицины такие мутанты, по существу, не имели никаких репродуктивных преимуществ по сравнению с остальными особями. Более того, эти мутации могли быть попросту вредными для их носителя. Но как только столкновения бактерий с антибиотиками стали регулярными, мутанты получили неоспоримое эволюционное преимущество.

Поначалу это преимущество было крохотным. После дозы антибиотика могли уцелеть лишь несколько резистентных особей — но это все же лучше, чем полная гибель. Со временем в популяциях E. coli такие мутанты стали встречаться чаще. Их потомки подвергались новым мутациям и становились еще более резистентными. В 1986 г. ученые обнаружили штаммы E. coli, синтезирующие фермент, способный разрушать молекулы целой группы антибиотиков — аминогликозидов. В 2003 г. другая группа ученых обнаружила E. coli с новым вариантом того же гена. Две новые мутации гена обеспечили его носителю резистентность не только к аминогликозидам, но и к совершенно другому антибиотику — ципрофлоксацину.

Даже в организме одного и того же человека E. coli может эволюционировать, принимая опасные формы. В августе 1990 г. в больницу Атланты поступила 19–месячная девочка с лихорадкой. Врачи выяснили, что ее кровь заражена E. coli, которая проникла туда, вероятно, через изъязвление в желудочно — кишечном тракте. Анализы выявили, что бактерия уже устойчива к двум распространенным антибиотикам — ампициллину и цефалоспорину. Врачи начали давать маленькой пациентке другие антибиотики, все более мощные, но лечение не помогало: антибиотики не только не уничтожали E. coli, но, казалось, делали ее сильнее. Бактерия обзаводилась все новыми генами резистентности, а те, что у нее уже были, продолжали развиваться. После пяти месяцев борьбы за жизнь и десяти различных антибиотиков ребенок умер.

Ужасные неудачи, подобные описанной, заставляют ученых мечтать о создании новых антибиотиков, перед которыми эволюция резистентности окажется бессильна. Подобно Флемингу, они находят многообещающих кандидатов на эту роль в самых неожиданных местах. Одна особенно перспективная с этой точки зрения группа химических веществ была обнаружена в 1987 г. в коже лягушки.

Научный сотрудник Национального института здоровья США Майкл Заслофф обратил внимание на то, что лягушки, изучением которых он в то время занимался, удивительно устойчивы к инфекции. Вообще‑то на материале лягушачьей икры Заслофф пытался разобраться, каким образом в клетках происходит передача генетической информации от гена к белку. Он вскрывал африканских шпорцевых лягушек, извлекал икру, а затем вновь зашивал. Иногда вода в аквариуме успевала помутнеть и испортиться, но лягушки — даже со свежими ранами — ничем не заражались.

Заслофф предположил, что лягушки выделяют какой- то антибиотик. Он несколько месяцев возился с лягушачьими шкурками, размалывал их и так, и этак, прежде чем сумел выделить необычное вещество, уничтожающее бактерии. Вещество оказалось короткой цепочкой аминокислот — так называемым пептидом. Вместе с другими исследователями Заслофф обнаружил, что работает это вещество на фундаментально иных принципах, чем все известные на тот момент антибиотики. Его молекула обладает отрицательным зарядом, что позволяет ей притягиваться к положительно заряженной мембране бактерии, но не к клеткам эукариот, в том числе человеческих. Вступив в контакт с бактерией, пептид проделывал в ее мембране отверстие, выпуская внутреннее содержимое микроорганизма наружу.

Заслофф понял, что наткнулся на огромную природную аптеку. Оказалось, что антимикробные пептиды синтезируются многими животными — от насекомых до акул и человека, и каждый вид может производить множество типов этих соединений. У нас, к примеру, антимикробные пептиды можно обнаружить на коже, а также на слизистой оболочке кишечника и легких. Стоит потерять способность к их производству, и человек становится опасно уязвимым. Такое заболева



Поделиться:


Последнее изменение этой страницы: 2016-08-10; просмотров: 331; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.161.199 (0.015 с.)