Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Дизъюнкция (логическое сложение).Содержание книги
Поиск на нашем сайте
Эта логическая операция соответствует союзу «или». Определение. Дизъюнкцией двух высказываний x, y называется новое высказывание, которое считается истинным, если хотя бы одно из высказываний x или y истинно и ложным, если они оба ложны. Дизъюнкция высказываний x, y обозначается x y и читается «x или y». Логические значения дизъюнкции описываются таблицей истинности:
Высказывания x, y называются членами дизъюнкции. Пример. x – «5>3», y – «2>4». Тогда x y – «5>3» «2>4» истинно, так как истинно высказывание x. В алгебре логики союз «или» всегда употребляется в неисключающем смысле. Из определения дизъюнкции и отрицания следует, что высказывание x всегда истинно. Конъюнкция. Эта логическая операция соответствует союзу «и». Определение. Конъюнкцией двух высказываний x, y называется новое высказывание, которое считается истинным, если оба высказывания x, y истинны, и ложным, если хотя бы одно из них ложно. Конъюнкция высказываний x, y обозначается и читается «x и y». Высказывания x, y называются членами конъюнкции. Логические значения конъюнкции описываются следующей таблицей истинности:
Пример. x – «6 делится на 2», y – «6 делится на 3». Тогда – «6 делится на 2» «6 делится на 3» истинно. Из определения операции конъюнкции видно, что союз «и» в алгебре логики употребляется в том же смысле, что и в повседневной речи. Но в обычной речи не принято соединять союзом «и» два высказывания, далеких друг от друга по содержанию, а в алгебре логики рассматривается конъюнкция двух любых высказываний. Из определения операций конъюнкции и отрицания следует, что высказывание всегда ложно. Импликация. Эта логическая операция соответствует словам «если…,то…». Определение. Импликацией двух высказываний x, y называется новое высказывание, которое считается ложным, если x истинно, а y ложно, и истинным во всех остальных случаях. Импликация высказываний обозначается x → y и читается «если x, то y» или «из x следует y». Высказывание x называется условием или посылкой, а высказывание y – следствием или заключением. Высказывание x → y называется следованием или импликацией. Логические значения операции импликации описываются следующей таблицей истинности:
Пример. 1) x – «12 делится на 6», y – «12 делится на 3». Тогда импликация x → y – «если 12 делится на 6, то оно делится на 3» истинна, так как истинна посылка x, и истинно заключение y. 2) x – «12 делится на 2 и 3», y – «12 делится на 7». Тогда импликация x → y – «если 12 делится на 2 и 3, то оно делится на 7» ложна, так как условие истинно, а заключение ложно. Употребление слов «если…,то…» в алгебре логики отличается от употребления их в обыденной речи, когда, как правило, считается, что если высказывание x ложно, то высказывание «если x, то y» вообще не имеет смысла. Кроме того, строя предложение «если x, то y» в обыденной речи всегда подразумевается, что предложение y вытекает из предложения x. Употребление слов «если…, то…» в математической логике не требует этого, так как в ней смысл высказываний не рассматривается. Импликация играет важную роль в математических доказательствах, так как многие теоремы формулируются в условной форме «если x, то y». Если при этом известно, что x истинно и доказана истинность импликации x → y то истинно и заключение y. В этом случае пишут x y и говорят, что из x следует y. Это классическое правило вывода постоянно используется в математике. Эквиваленция. Эта логическая операция соответствует словам «тогда и только тогда, когда». Определение. Эквиваленцией или эквивалентностью двух высказываний x, y называется новое высказывание, которое считается истинным, если оба высказывания x, y либо одновременно истинны, либо одновременно ложны, и ложным во всех остальных случаях. Эквиваленция высказываний x, y обозначается символом x ↔ y и читается «для того чтобы x, необходимо и достаточно, чтобы y» или «x тогда и только тогда, когда y». Логические значения операции эквиваленции описываются следующейтаблицей истинности:
Высказывания x, y называются членами эквиваленции. Пример. x – «Треугольник ABC с вершиной A и основанием BC равнобедренный», y – « B= C». Эквиваленция x ↔ y – «Треугольник ABC с вершиной A и основанием BC равнобедренный тогда и только тогда, когда B= C.» Эквиваленция x ↔ y истинна, так как высказывания x и y либо одновременно истинны, либо одновременно ложны. Эквивалентность играет важную роль в математических доказательствах. Известно, что значительное число теорем формулируется в виде необходимых и достаточных условий, то есть в форме эквивалентности. В этом случае, зная об истинности или ложности одного из двух членов эквивалентности и доказав истинность самой эквивалентности, делается вывод об истинности или ложности второго члена эквивалентности.
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-08-10; просмотров: 452; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.217.110.145 (0.005 с.) |