ТОП 10:

Круговорот веществ и энергии в биосфере.



Академик В. Р. Вильямс писал, что единственный способ придать чему-то конечному свойства бесконечного – это заставить конечное вращаться по замкнутой кривой, т. е. вовлечь его в круговорот.

Все вещества на планете Земля находятся в процессе круговорота. Круговоротом веществ на Земле называются повторяющиеся процессы превращения и перемещения веществ в природе, имеющие более или менее выраженный циклический характер. Различают два типа круговорота веществ – большой (геологический, абиотический) и малый (биологический, биотический).

Большой круговорот носит глобальный, планетарный характер, охватывает всю биосферу и выходит за ее пределы. Он обусловлен взаимодействием солнечной энергии с глубинной энергией Земли и представляет собой перераспределение вещества между биосферой и более глубокими слоями Земли. Суть геологического круговорота состоит в следующем: выветривание магматических горных пород приводит к их разрушению и трансформации в осадочные. Осадочные горные породы в результате ряда процессов попадают в зоны действия высоких температур и давлений (в частности, сносятся потоками воды в Мировой океан). Там они преобразуются (метаморфизм), переплавляются и превращаются в магму – источник новых магматических пород, которые вновь поднимаются на поверхность планеты в результате медленных геологических процессов. Каждый последующий цикл круговорота не является точным повторением предыдущего, а вносит что-то новое, и это со временем приводит к очень значительным изменениям.

Малый круговорот является частью большого, осуществляется внутри экосистем и не выходит за пределы биосферы. Суть биологического круговорота заключается в протекании двух противоположных, но взаимосвязанных процессов: создании органического вещества (биомассы) из неорганических соединений в процессе фотосинтеза и разрушении органического вещества до неорганических соединений в процессе разложения. Источником биологического круговорота является солнечная энергия, которая связывается, запасается на поверхности Земли в результате процесса фотосинтеза.

Фотосинтез – единственный процесс на Земле, при котором солнечная энергия не только тратится и перераспределяется, но и связывается (в количестве, не превышающем 5% от всей энергии Солнца, достигающей земной поверхности). Связанная энергия вступает в круговорот по трофическим (пищевым) цепям, претерпевая превращения из одной формы в другую:

Солнечная энергия (свет),

Химическая энергия (энергия химических связей),

3. механическая энергия (работа),

Тепловая энергия (тепло).

Таким образом, на каждом этапе развития живого организма часть потенциальной (запасенной растениями в процессе фотосинтеза) химической энергии, получаемой им в результате питания, позволяет организму осуществлять свои жизненные функции и высвобождается в космическое пространство в виде тепла.

 

Биогеохимический круговорот.

Биогеохимический круговорот – перемещение и превращение химических элементов через косную и органическую природу при активном участии живого вещества. Биогеохимический круговорот является важным показателем интенсивности биологического круговорота, отражая скорость обращения химических элементов.

Различают два типа биогеохимических циклов:

1. круговорот газообразных веществ с резервным фондом в атмосфере и гидросфере.

2. осадочный цикл с резервным фондом в литосфере.

Атмосфера имеет большой резервный фонд и высокую способность к саморегуляции, в отличие от осадочного цикла, который легко нарушается. Это связано с тем, что основная часть химических веществ сосредоточена в относительно малоподвижном и малоактивном резервном фонде земной коры. Если изъятие химических элементов в этих циклах происходит быстрее, чем возврат, то какая-то их часть может выбыть из круговорота на длительное время. Механизмы возвращения химических элементов в круговорот основаны главным образом на биологических процессах.

Существенную роль в жизни биосферы играет круговорот биогенных химических элементов: углерода С, фосфора Р, кислорода О, азота N, серы S, водорода Н.

Одни из элементов требуются организмам в относительно больших количествах (макроэлементы), другие тоже жизненно необходимы, но в меньших количествах (микроэлементы).

Круговорот кислорода.

 

Кислород является наиболее распространенным элементом на Земле (58 %). В атмосферном воздухе содержится около 21 весовой % кислорода, в литосфере – 47 %, а в гидросфере – 32%. Кислород и его соединения незаменимы для поддержания жизни. Вследствие количественного преобладания и большой окислительной активности кислород предопределяет форму существования химических элементов на Земле. Известно свыше 1400 минералов, содержащих кислород. Энергетические процессы в живом организме основываются на окислительно-восстановительных реакциях. При этом лишь некоторые группы микроорганизмов осуществляют эти процессы без участия кислорода путем гликолиза и брожения. Абсолютное большинство живых организмов получают энергию благодаря аэробному окислению органических веществ. Этот путь энергетически более выгоден. Он связан с закономерными процессами газообмена: постоянным притоком О2 и выносом СО2, образующегося в результате окисления органических субстратов. При такой системе энергетического обеспечения жизнедеятельности организмов кислород приобретает роль важнейшего экологического фактора.

Механизм газообмена заключается в диффузии газов – кислорода и диоксида углерода – по градиенту концентрации. Основная масса кислорода находится в связанном состоянии; количество молекулярного кислорода в атмосфере оценивается в 1,5 •1015 т, что составляет всего лишь 0,01% от общего содержания кислорода в земной коре. Относительное постоянство концентрации кислорода в атмосфере поддерживается благодаря процессу фотосинтеза. В этом процессе зеленые растения под действием солнечного света превращают диоксид углерода и воду в углеводы и кислород.

У растений дыхание в отличие от фотосинтеза осуществляется всеми органами и тканями. Кислород проникает в растения через устьица, растворяется в жидкостях клеточных стенок и по градиенту парциального давления проникает в цитоплазму.

У животных диффузионный принцип газообмена лежал в основе формирования специализированных органов дыхания. Для крупных форм это связано с разделением общего процесса дыхания на внешнее (газообмен в дыхательных органах) и внутреннее (газообмен в клетках и тканях). При этом формируется транспортная система (гемолимфа, кровь), функционально объединяющая эти два процесса. Дыхание через поверхность тела без участия транспортной системы эффективно лишь для очень маленьких организмов.

В большинстве случаев у многоклеточных животных сформировались специальные органы внешнего дыхания, связанные транспортной системой со всеми клетками и тканями организма. Принцип таких органов достаточно однообразен: формируются открытые участки покровных эпителиальных тканей, густо снабженные системой кровеносных капилляров. Через эти участки осуществляется диффузия О2 из внешней среды в кровь и СО2 – в обратном направлении.

Кислород также играет важную роль в процессах обмена. Он входит в состав белков, жиров, углеводов, из которых состоят организмы. В человеческом организме содержится, например, около 65% кислорода.
Убыль кислорода в атмосфере в результате процессов дыхания, гниения и горения возмещается кислородом, выделяющимся при фотосинтезе. За счет деятельности зеленых растений и бактерий ежегодно поглощается около 300 млрд. т СО2, выделяется 200 млрд. т О2, синтезируется 150 млрд. т органических веществ. При этом консервируется в форме химической энергии 45•1018 кДж солнечной энергии. Ежегодно потребляемая при фотосинтезе энергия Солнца во много раз превышает количество энергии, потребляемой человечеством. Вырубка лесов, эрозия почв, различные горные выработки на поверхности уменьшают общую массу фотосинтеза и снижают круговорот кислорода на значительных территориях. Мощным источником кислорода является также фотохимическое разложение водяного пара в верхних слоях атмосферы под влиянием УФ солнечных лучей.

Кроме описанного выше круговорота кислорода в несвязанном виде, этот элемент совершает еще и важнейший круговорот, входя в состав воды. Круговорот воды заключается в испарении ее с поверхности суши и водоемов, переносе ее воздушными массами и ветрами, конденсации паров и последующее выпадение осадков в виде дождя, снега, града, тумана.

Круговорот углерода.

Углерод по распространенности на Земле занимает шестнадцатое место среди всех элементов и составляет приблизительно 0,027% массы земной коры. В несвязанном состоянии он встречается в виде алмазов и графита. Каменный уголь содержит до 90% углерода. В связанном состоянии углерод входит также в разные горючие ископаемые, в карбонатные минералы (доломит, кальцит), а также в состав всех биологических веществ.

Углерод имеет исключительное значение для живого вещества. Тип жизни на Земле обычно называют углеродным, потому, что именно этот элемент составляет ее основу. Углерод в таблице Менделеева стоит под шестым номером и на внешней орбите имеет четыре электрона. Вступая в реакции с другими атомами, углерод заполняет полностью свой внешний электронный слой, образуя прочные ковалентные связи. Значение углерода, как основы жизни определяется тем, что его атомы, как атомы никакого другого элемента способны образовывать прочные связи друг с другом, образуя цепочки и кольца, которые являются скелетом органических молекул. Сочетание цепочек и колец с различным количеством звеньев, содержащих насыщенные и ненасыщенные связи, на которых как на скелете крепятся другие атомы и химические группы, имеющие различные химические свойства дает огромное разнообразие биологических молекул. Эти молекулы являются веществом, из которого строятся живые организмы. Из углерода в биосфере создаются миллионы органических соединений.

Во времена зарождения жизни на Земле и океан, и атмосфера, и климат значительно отличались от современных. Первичная атмосфера Земли характеризовалась почти полным отсутствием кислорода, значительным содержанием окиси и двуокиси углерода, аммиака и сероводорода. Активно шли вулканические и грозовые процессы, поставляющие эти газы в атмосферу. При растворении этих газов в соленой воде океана и взаимодействия между ними происходили процессы химического синтеза органических молекул. В ходе эволюции появились живые клетки, способные к фотосинтезу. В процессе фотосинтеза образуется кислород. Чем больше появлялось растений на планете, тем значительнее изменялся состав атмосферы. Со временем содержание кислорода существенно увеличилось до 21%, а углекислого газа – уменьшилось до 10%.

Атмосферный фонд СО2 в круговороте, по сравнению с запасами углерода в океанах, ископаемом топливе и других резервуарах земной коры, относительно невелик. Углекислый газ из атмосферы в процессе фотосинтеза, осуществляемого зелеными растениями, ассимилируется и превращается в разнообразные органические соединения. Растительные организмы, особенно низшие микроорганизмы, морской фитопланктон, благодаря исключительной скорости размножения, продуцируют в год около 1,5•1011 т углерода в виде органической массы. Растения частично поедаются животными. В конечном счете, органическая масса в результате дыхания, гниения и горения превращается в углекислый газ или отлагается в виде сапропеля, гумуса, торфа, каменного угля, нефти и т.д. В процессах распада органических веществ, их минерализации, огромную роль играют бактерии, грибы. В активном круговороте «углекислый газ – живое вещество» участвует очень небольшая часть всей массы углерода.

Между углекислым газом атмосферы и водой океана существует подвижное равновесие. Организмы поглощают углекислый кальций, создают свои скелеты, а затем из них образуются пласты известняков. Атмосфера пополняется углекислым газом благодаря процессам разложения органических веществ, карбонатов и т.д. Особенно мощным источником являются вулканы, газы которых состоят главным образом их паров воды и углекислого газа.

С наступлением научно-технического прогресса в сбалансированный поток углерода между атмосферой, материками и океанами начинают поступать в атмосферу большие количества углеродсодержащих веществ, которые не полностью могут связаться растениями. В результате содержание СО2 в атмосфере растет, что ведет к увеличению глобальной температуры на планете, к повышению уровня Мирового океана, а также к неблагоприятным последствиям в сельском хозяйстве.

Помимо диоксида углерода в атмосфере в небольших количествах присутствуют оксид углерода СО и метан СН4. Эти соединения активно включены в круговорот и поэтому имеют небольшое время пребывания в атмосфере: СО – около 0,1 года, СН4 – 3,4 года, а СО2 – 4 года. Оксид углерода и метан образуются при неполном или аэробном разложении органического вещества и в атмосфере окисляются до СО2.

Метан образуется при разложении органического вещества в болотистых местностях и мелководных морях. Накопление СО в глобальном масштабе не представляется реальным, но в городах, где воздух застаивается, имеет место повышение концентрации этого соединения, что негативно влияет на здоровье людей.

Круговорот азота.

Азот входит в состав атмосферы в несвязанном виде в форме двухатомных молекул N2. Приблизительно 78% всего объема атмосферы приходится на долю азота. В количественном выражении это составляет 4•1015 т. Однако ни животные, ни человек, ни растения потреблять молекулярный азот не могут, поэтому он в крайне незначительной степени затрагивается биологическим круговоротом. Общее отношение связанного азота к его количеству в свободном виде составляет 1:1000 000, поэтому азот является наиболее лимитирующим биогенным элементом.

В круговороте азота ключевую роль играют микроорганизмы. Именно они осуществляют основные типы обмена между организмами и средой. Благодаря действию денитрифицирующих бактерий азот постоянно поступает в атмосферу, а под действием азотофиксирующих бактерий возвращается в круговорот.

Из растений фиксировать азот могут только представители семейства бобовых, на корнях которых образуются клубеньки, состоящие из азотофиксирующих бактерий. Считается, что бактерии переводят в связанную форму приблизительно 1 млрд. т азота в год, промышленная его фиксация составляет около 90 млн. т.

Типы организмов, фиксирующих азот:

1. свободно живущие бактерии – Azotobakter и Clostridium (анаэроб);

2. симбиотические клубеньковые бактерии бобовых растений –Rhizobium;

3. цианобактерии –Anabaena, Nostoc и др.

Кроме жизнедеятельности так называемых азотобактерий, другим источником пополнения азотных соединений почвы являются процессы, происходящие в атмосфере. Это электрические разряды, при которых всегда образуется некоторое количество оксидов азота, которые, соединяясь с атмосферной влагой, дают азотную кислоту, превращающуюся в почве в нитраты.

Из всего азота, который ежегодно усваивается глобальным биотическим сообществом, около 80% возвращается в круговорот суши и воды и только 20% поступает из атмосферы с дождем и в результате фиксации.

В современных условиях человек своей деятельностью оказывает значительное влияние на круговорот азота: увеличивает содержание азота в резервном фонде (сжигание ископаемого топлива, осушение заболоченных земель, обработка почвы и т.д.) и снижает его содержание в атмосфере (выращивание бобовых культур на огромных территориях, техническое связывание азота). Убыль азотных соединений в почве необходимо возмещать соответствующими удобрениями. В основном используют нитрат кальция Ca(NO3)2, нитрат аммония NH4NO3, нитрат натрия NaNO3, и нитрат калия KNO3.

В последнее время наблюдается повышенное содержание нитратов в питьевой воде и пищевых продуктах, главным образом за счет нерационального использования азотных удобрений в сельском хозяйстве. Опасность нитратов для здоровья людей заключается в их способности превращаться в организме человека в нитриты и далее в нитрозамины, которые способны вызывать онкологические заболевания. Большое количество соединений азота попадает в атмосферу с выхлопными газами от транспорта и от промышленных выбросов. Особенно токсичны оксиды азота NO2 и N2O. Они раздражают дыхательные пути, вызывая серьезные легочные и аллергические заболевания. Реагируя с другими веществами оксиды азота, образуют соединения с синергическим эффектом, когда воздействие продуктов реакции на организмы больше суммарного воздействия каждого из реагирующих веществ в отдельности. Например, под действием ультрафиолетового излучения солнца NO2 вступает в реакцию с продуктами неполного сгорания углеводородов. В результате возникает фотохимический смог.

Круговорот фосфора.

Фосфор принадлежит к числу довольно распространенных элементов. Содержание его в земной коре составляет около 0,1 масс.%. Вследствие легкой окисляемости фосфор в свободном состоянии не встречается. Источником фосфора биосферы являются главным образом фосфорит Ca3(PO4)2 и апатит Ca3(PO4)2 • CaF2 (CaCl2), встречающийся во всех магматических породах.

Фосфор, как и азот, необходим всем живым существам, так как входит в состав белков. В растениях фосфор содержится в белках семян, в животных организмах – в белках молока, крови, мозговой и нервной тканях. Кроме того, большое количество фосфора содержится в костях позвоночных животных в виде Ca3(PO4)2 • Ca(OH)2 и Ca3(PO4)2 • CaCO3 • H2O. В виде кислотного остатка фосфорной кислоты фосфор входит в состав нуклеиновых кислот, которые принимают непосредственное участие в процессах передачи наследственных свойств живой клетки.

В превращениях фосфора большую роль играет живое вещество. Организмы извлекают фосфор из почвы и водных растворов. Усвоение фосфора растениями во многом зависит от кислотности почвы. Естественное пополнение почвы фосфорными соединениями незначительно, поэтому в нее вносят удобрения. Ежегодно в мире добывают около 125 млн. т фосфатной руды. Большая ее часть расходуется на производство фосфатных удобрений.

Механизмы возврата фосфора в круговорот мало эффективны и не возмещают его потерь. Перенос фосфора с морской водой на сушу не компенсирует его поток в море. Деятельность человека ведет к усиленной потере фосфора, что делает круговорот недостаточно замкнутым. Поэтому возврат фосфора в круговорот имеет большое значение для человечества.

Круговорот серы.

Круговорот серы имеет ряд характерных особенностей:

1. обширный резервный фонд в почвах и меньший – в атмосфере;

2. ключевая роль в быстро обменивающемся фонде микроорганизмов, выполняющих определенную работу в окислении или восстановлении;

3. микробная регенерация из глубоководных отложений, в результате которой вверх движется газовая фаза (Н2S).

4. взаимодействие геохимических и метеорологических процессов с биологическими процессами;

5. взаимодействие воздуха, воды и почвы в регуляции круговорота в глобальном масштабе.

Основная доступная форма серы – SO4 2- - восстанавливается автотрофами и включается в белки. Для растений серы требуется меньше, чем азота и фосфора, поэтому лимитирующим фактором она бывает реже. Тем не менее, круговорот серы – ключевой в общем процессе продуцирования и разложения биомассы.

В последнее время на круговорот серы все большее влияние оказывает промышленное загрязнение атмосферы. В связи с неумеренным сжиганием топлива содержание в воздухе H2S и SO2, особенно в крупных промышленных центрах, увеличилось до концентраций, представляющих опасность для важных биотических компонентов экосистем. Особенно большой вред наносит SO2 растениям. Реагируя с водяным паром, он образует серную кислоту, которая выпадает с осадками в виде кислотных дождей. Попав на листовую поверхность, H2SO4 вызывает химические ожоги, что снижает фотосинтезирующую поверхность растений.

 

 







Последнее изменение этой страницы: 2016-08-10; Нарушение авторского права страницы

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.237.94.109 (0.015 с.)