Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Характеристика FDDI Ethernet Token Ring

Поиск

Битовая скорость 100 Мбит/с 10 Мбит/с 16 Мбит/с

Топология Двойное кольцо Шина/звезда Звезда/кольцо

деревьев

Метод доступа Доля от времени CSMA/CD Приоритетная

оборота маркера система

резервирования

 

Среда передачи Оптоволокно, Толстый коаксиал, Экранированная

данных неэкранированная тонкий коаксиал, и неэкранированная

витая пара витая пара витая пара,

категории 5 категории 3, оптоволокно

оптоволокно

Максимальная 200 км (100 км 2500 м 4000 м

длина сети на кольцо)

(без мостов)

Максимальное 2 км (не больше 2500 м, 100 м

расстояние между 11 дБ потерь

узлами между узлами)

Максимальное 500 (1000 соеди- 1024 260

Количество узлов нений) для экранированной

витой пары, 72 для

неэкранированной витой пары

Тактирование Распределенная Не определены Активный монитор

и восстановление реализация такти

после отказов рования и восстанов-

ления после отказов

 

Технология FDDI разрабатывалась для применения в ответственных участках сетей - на магистральных соединениях между крупными сетями, например сетями зданий, а также для подключения к сети высокопроизводительных серверов. Поэтому главным для разработчиков было обеспечить высокую скорость передачи данных, отказоустойчивость на уровне протокола и большие расстояния между узлами сети. Все эти цели были достигнуты. В результате технология FDDI получилась качественной, но весьма дорогой. Даже появление более дешевого варианта для витой пары не намного снизило стоимость подключения одного узла к сети FDDI. Поэтому практика показала, что основной областью применения технологии FDDI стали магистрали сетей, состоящих из нескольких зданий, а также сети масштаба крупного города, то есть класса MAN. Для подключения клиентских компьютеров и даже небольших серверов технология оказалась слишком дорогой. А поскольку оборудование FDDI выпускается уже около 10 лет, значительного снижения его стоимости ожидать не приходится.

В результате сетевые специалисты с начала 90-х годов стали искать пути создания сравнительно недорогих и в то же время высокоскоростных технологий, которые бы так же успешно работали на всех этажах корпоративной сети, как это делали в 80-е годы технологии Ethernet и Token Ring.

Выводы

Технология FDDI первой использовала волоконно-оптический кабель в локальных сетях, а также работу на скорости 100 Мбит/с.

Существует значительная преемственность между технологиями Token Ring и FDDI: для обеих характерны кольцевая топология и маркерный метод доступа.

Технология FDDI является наиболее отказоустойчивой технологией локальных сетей. При однократных отказах кабельной системы или станции сеть, за счет «сворачивания» двойного кольца в одинарное, остается вполне работоспособной.

Маркерный метод доступа FDDI работает по-разному для синхронных и асинхронных кадров (тип кадра определяет станция). Для передачи синхронного кадра станция всегда может захватить пришедший маркер на фиксированное время. Для передачи асинхронного кадра станция может захватить маркер только в том случае, когда маркер выполнил оборот по кольцу достаточно быстро, что говорит об отсутствии перегрузок кольца. Такой метод доступа, во-первых, отдает предпочтение синхронным кадрам, а во-вторых, регулирует загрузку кольца, притормаживая передачу несрочных асинхронных кадров.

В качестве физической среды технология FDDI использует волоконно-оптические кабели и UTP категории 5 (этот вариант физического уровня называется TP-PMD).

Максимальное количество станций двойного подключения в кольце - 500, максимальный диаметр двойного кольца - 100 км. Максимальные расстояния между соседними узлами для многомодового кабеля равны 2 км, для витой пары UPT категории 5-100 м, а для одномодового оптоволокна зависят от его качества.

 

 

Старший преподаватель кафедры №24 подполковник________ Баричев С. Г.

 


Лекция 14

Тема: Реализация протоколов взаимодействия сетей в TCP/IP

Вопросы:

1. Протокол сетевого уровня IP

2. Протокол транспортного уровня TCP.

 

Реализация межсетевого взаимодействия средствами TCP/IP

В настоящее время стек TCP/IP является самым популярным средством организа­ции составных сетей. На рис. 5.4 показана доля, которую составляет тот или иной стек протоколов в общемировой инсталляционной сетевой базе. До 1996 года бес­спорным лидером был стек IPX/SPX компании Novell, но затем картина резко изменилась — стек TCP/IP по темпам роста числа установок намного стал опере­жать другие стеки, а с 1998 года вышел в лидеры и в абсолютном выражении. Именно поэтому дальнейшее изучение функций сетевого уровня будет проводить­ся на примере стека TCP/IP.

Рис. 5.4. Стек TCP/IP становится основным средством построения составных сетей

Многоуровневая структура стека TCP/IP

В стеке TCP/IP определены 4 уровня (рис, 5.5). Каждый из этих уровней несет на себе некоторую нагрузку по решению основной задачи — организации надежной и производительной работы составной сети, части которой построены на основе раз­ных сетевых технологий.

Рис. 5.5. Многоуровневая архитектура стека TCP/IP

Уровень межсетевого взаимодействия

Стержнем всей архитектуры является уровень межсетевого взаимодействия, который реализует концепцию передачи пакетов в режиме без установления соединений, то есть дейтаграммным способом. Именно этот уровень обеспечивает возможность пере­мещения пакетов по сети, используя тот маршрут, который в данный момент являет­ся наиболее рациональным. Этот уровень также называют уровнем internet, указывая тем самым на основную его функцию — передачу данных через составную сеть.

Основным протоколом сетевого уровня (в терминах модели OSI) в стеке является протокол IP (Internet Protocol). Этот протокол изначально проектировался как про­токол передачи пакетов в составных сетях, состоящих из большого количества ло­кальных сетей, объединенных как локальными, так и глобальными связями. Поэтому протокол IP хорошо работает в сетях со сложной топологией, рационально исполь­зуя наличие в них подсистем и экономно расходуя пропускную способность низко­скоростных линий связи. Так как протокол IP является дейтаграммным протоколом, он не гарантирует доставку пакетов до узла назначения, но старается это сделать.

К уровню межсетевого взаимодействия относятся и все протоколы, связанные с составлением и модификацией таблиц маршрутизации, такие как протоколы сбора маршрутной информации RIP (Routing Internet Protocol) и OSPF (Open Shortest Path First), а также протокол межсетевых управляющих сообщений ICMP (Internet Control Message Protocol). Последний протокол предназначен для обмена инфор­мацией об ошибках между маршрутизаторами сети и узлом-источником пакета. С помощью специальных пакетов ICMP сообщает о невозможности доставки па­кета, о превышении времени жизни или продолжительности сборки пакета из фраг­ментов, об аномальных величинах параметров, об изменении маршрута пересылки и типа обслуживания, о состоянии системы и т. п.

Основной уровень

Поскольку на сетевом уровне не устанавливаются соединения, то нет никаких гарантий, что все пакеты будут доставлены в место назначения целыми и невреди­мыми или придут в том же порядке, в котором они были отправлены. Эту задачу — обеспечение надежной информационной связи между двумя конечными узлами — решает основной уровень стека TCP/IP, называемый также транспортным.

На этом уровне функционируют протокол управления передачей TCP (Trans­mission Control Protocol) и протокол дейтаграмм пользователя UDP (User Datagram Protocol). Протокол TCP обеспечивает надежную передачу сообщений между уда­ленными прикладными процессами за счет образования логических соединений. Этот протокол позволяет равноранговым объектам на компьютере-отправителе и компьютере-получателе поддерживать обмен данными в дуплексном режиме. TCP позволяет без ошибок доставить сформированный на одном из компьютеров поток байт в любой другой компьютер, входящий в составную сеть. TCP делит поток байт на части — сегменты и передает их ниже лежащему уровню межсетевого вза­имодействия. После того как эти сегменты будут доставлены средствами уровня межсетевого взаимодействия в пункт назначения, протокол TCP снова соберет их в непрерывный поток байт.

Протокол UDP обеспечивает передачу прикладных пакетов дейтаграммным способом, как и главный протокол уровня межсетевого взаимодействия IP, и вы­полняет только функции связующего звена (мультиплексора) между сетевым про­токолом и многочисленными службами прикладного уровня или пользовательскими процессами.

Прикладной уровень

Прикладной уровень объединяет все службы, предоставляемые системой пользова­тельским приложениям. За долгие годы использования в сетях различных стран и организаций стек TCP/IP накопил большое количество протоколов и служб прикладного уровня. Прикладной уровень реализуется программными системами построенными в архитектуре клиент-сервер, базирующимися на протоколах нижних уровней. В отличие от протоколов остальных трех уровней, протоколы прикладного уровня занимаются деталями конкретного приложения и не интересуются способами передачи данных по сети. Этот уровень постоянно расширяется за счет присоединения к старым, прошедшим многолетнюю эксплуатацию сетевым службам типа Telnet, FTP, TFTP, DNS, SNMP сравнительно новых служб таких, напри мер, как протокол передачи гипертекстовой информации HTTP.



Поделиться:


Последнее изменение этой страницы: 2016-08-10; просмотров: 202; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.97.104 (0.01 с.)