Электронная проводимость металлов. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Электронная проводимость металлов.



Электронная проводимость металлов.

Ещё до открытия электронов было обнаружено, что протекание тока в металлах, в отличие от тока в жидких электролитах, не обусловлено переносом вещества металла. Эксперимент, который выполнил немецкий физик Карл Виктор Эдуард Рикке (Riecke Carl Viktor Eduard) в 1901 году, состоял в том, что через контакты различных металлов, — двух медных и одного алюминиевого цилиндра с тщательно отшлифованными торцами, поставленными один на другой, в течение года пропускался постоянный электрический ток. Затем исследовался состав материала вблизи контактов. Оказалось, что переноса вещества металла через границу не происходит и вещество по разные стороны границы раздела имеет тот же состав, что и до пропускания тока. Таким образом было показано, что перенос электрического тока осуществляется не атомами и молекулами металлов. Однако эти опыты не дали ответа на вопрос о природе носителей заряда в металлах.

Сила и плотность тока.

Плотность тока — вектор, ориентирован­ный по направлению тока, т. е. направле­ние вектора j совпадает с направлением упорядоченного движения положительных зарядов. Единица плотности тока — ампер на метр в квадрате (А/м2).

Сила тока сквозь произвольную по­верхность S определяется как поток векто­ра j, т. е.

где d S = n dS (n — единичный вектор нор­мали к площадке dS, составляющей с век­тором j угол a).

Количественной мерой электрического тока служит сила тока I — скалярная фи­зическая величина, определяемая элек­трическим зарядом, проходящим через по­перечное сечение проводника в единицу времени:

I=dQ/dt.

Напряжение.

Электри́ческое напряже́ние между точками A и B электрической цепи или электрического поля — физическая величина, значение которой равно работе эффективного электрического поля (включающего сторонние поля), совершаемой при переносе единичного пробногоэлектрического заряда из точки A в точку B

Закон Ома на участке цепи. Падение напряжения.

Сила тока в участке цепи прямо пропорциональна напряжению на концах этого проводника и обратно пропорциональна его сопротивлению:

I = U / R; [A = В / Ом]


Ом установил, что сопротивление прямо пропорционально длине проводника и обратно пропорционально площади его поперечного сечения и зависит от вещества проводника.

R = ρl / S,
где ρ - удельное сопротивление, l - длина проводника, S - площадь поперечного сечения проводника.

Напряжение между произвольными точками проводника с током называется падением напряжения.

[ U ]=

Ватт Ампер

= Вольт

Зависимость сопротивления от температуры, длины, площади сечения.

Длиннее-сопротивление больше, толще-сопротивление меньше. Материал-удельное сопротивление ищи в таблицах

Длиннее-сопротивление больше, толще-сопротивление меньше. Материал-удельное сопротивление ищи в таблицах

Сверхпроводимость.

Сверхпроводи́мость — свойство некоторых материалов обладать строго нулевым электрическим сопротивлением при достижении ими температуры ниже определённого значения (критическая температура). Известны несколько сотен соединений, чистых элементов, сплавов и керамик, переходящих в сверхпроводящее состояние. Сверхпроводимость — квантовое явление. Оно характеризуется также эффектом Мейснера, заключающемся в полном вытеснении магнитного поля из объёма сверхпроводника. Существование этого эффекта показывает, что сверхпроводимость не может быть описана просто как идеальная проводимость в классическом понимании

Работа и мощность электрического тока. Закон Джоуля-Ленца. Ток короткого замыкания.

При протекании тока по однородному участку цепи электрическое поле совершает работу. За время Δ t по цепи протекает заряд Δ q = I Δ t. Электрическое поле на выделенном учестке совершает работу

Δ A = (φ1 – φ2) Δ q = Δφ12 I Δ t = U I Δ t,

где U = Δφ12 – напряжение. Эту работу называют работой электрического тока

закон Джоуля-Ленца - количество теплоты, которое выделяется в проводнике с током, пропорционально квадрату силы тока, времени его прохождения и сопротивлению проводника.

.

Звук, громкость и высота.

Звук — физическое явление, представляющее собой распространение в виде упругих волн механических колебаний в твёрдой, жидкой или газообразной среде. В узком смысле под звуком имеют в виду эти колебания, рассматриваемые в связи с тем, как они воспринимаются органами чувств животных и человека

Гро́мкость зву́ка — субъективное восприятие силы/интенсивности звука (абсолютная величина слухового ощущения). Громкость главным образом функционально зависит от звукового давления (интенсивности звука) и частоты звуковых колебаний. Также на громкость звука влияют его спектральный состав, локализация в пространстве, тембр, длительность воздействия звуковых колебаний и другие факторы

ВЫСОТА ЗВУКА - субъективное качество слухового ощущения, позволяющее располагать все звуки по шкале от низких к высоким

Строение ядра атома. Открытие протона и нейтрона. Ядерные силы.

Данную частицу Резерфорд назвал протоном. От греческого «протос» - первый. Следует понимать, что не протон является ядром атома водорода, а наоборот, ядро атома водорода имеет такое строение, что в него входит всего один протон.

В состав ядер атомов других химических элементов может входить гораздо большее число протонов. Протон имеет положительный электрический заряд. При этом заряд протона равен заряду электрона, вот только имеет другой знак.

Ученик Резерфорда Чедвик провел серию опытов и обнаружил частицы, вылетающие из ядра атома бериллия при бомбардировке альфа-излучениями, но не имеющими никакого заряда.

Отсутствие заряда было констатировано по тому факту, что частицы никак не реагировали на электромагнитное поле. Стало очевидно, что обнаружен недостающий элемент конструкции ядра атома.

Данные частицы были названы нейтронами. Нейтрон имеет массу примерно равную массе протона, но при этом, как уже говорилось, не имеет никакого заряда.

- силы взаимодействия между нуклонами; обеспечивают большую величину энергии связи ядер посравнению с др. системами. Я. с. являются наиб. важным и распространённым примером сильноговзаимодействия

62)Энергия связи. Атомное число A=Z+N; Eсв=mc2

энергия связ. системы к.-л. ч-ц (напр., атома как системы из ядра и эл-нов), равная работе, к-руюнеобходимо затратить, чтобы разделить эту систему на составляющие её ч-цы и удалить их друг от друга натакое расстояние, на к-ром их вз-ствием можно пренебречь. Э. с. определяется вз-ствием ч-ц и явл. отрицат.величиной, т. к. при образовании связ. системы энергия выделяется. Абс. величина Э. с. характеризуетпрочность связи и устойчивость системы.

Электронная проводимость металлов.

Ещё до открытия электронов было обнаружено, что протекание тока в металлах, в отличие от тока в жидких электролитах, не обусловлено переносом вещества металла. Эксперимент, который выполнил немецкий физик Карл Виктор Эдуард Рикке (Riecke Carl Viktor Eduard) в 1901 году, состоял в том, что через контакты различных металлов, — двух медных и одного алюминиевого цилиндра с тщательно отшлифованными торцами, поставленными один на другой, в течение года пропускался постоянный электрический ток. Затем исследовался состав материала вблизи контактов. Оказалось, что переноса вещества металла через границу не происходит и вещество по разные стороны границы раздела имеет тот же состав, что и до пропускания тока. Таким образом было показано, что перенос электрического тока осуществляется не атомами и молекулами металлов. Однако эти опыты не дали ответа на вопрос о природе носителей заряда в металлах.

Сила и плотность тока.

Плотность тока — вектор, ориентирован­ный по направлению тока, т. е. направле­ние вектора j совпадает с направлением упорядоченного движения положительных зарядов. Единица плотности тока — ампер на метр в квадрате (А/м2).

Сила тока сквозь произвольную по­верхность S определяется как поток векто­ра j, т. е.

где d S = n dS (n — единичный вектор нор­мали к площадке dS, составляющей с век­тором j угол a).

Количественной мерой электрического тока служит сила тока I — скалярная фи­зическая величина, определяемая элек­трическим зарядом, проходящим через по­перечное сечение проводника в единицу времени:

I=dQ/dt.

Напряжение.

Электри́ческое напряже́ние между точками A и B электрической цепи или электрического поля — физическая величина, значение которой равно работе эффективного электрического поля (включающего сторонние поля), совершаемой при переносе единичного пробногоэлектрического заряда из точки A в точку B



Поделиться:


Последнее изменение этой страницы: 2016-08-10; просмотров: 352; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.129.70.157 (0.013 с.)