Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Отвердители для эпоксидных смолСодержание книги
Поиск на нашем сайте
Ярко выраженный полярный характер связи С — О в эпоксидном цикле в сочетании с его высокой напряженностью обусловливает способность эпоксидных смол раскрывать цикл под действием нуклеофильных и электрофильных реагентов (отвердителей, рис. 5) с образованием твердых сетчатых полимеров. В качестве нуклеофильных отвердителей используют алифатические и ароматические первичные и вторичные ди- и полиамины, многоосновные кислоты и их ангидриды, многоатомные спирты, фенолы и их тиопроизводные, а также полиамиды, феноло-формальдегидные смолы резольного и новолачного типа, третичные амины и их соли; в качестве электрофильных отвердителей - кислоты Бренстеда и Льюиса, способные образовывать с эпоксидным циклом триалкилоксониевый ион. Процесс отверждения нуклеофильными агентами протекает по механизму реакции поликонденсации или анионной полимеризации, электрофильными - только по механизму катионной полимеризации. Различают низко- и высокотемпературные процессы отверждения эпоксидных смол. Процесс низкотемпературного ("холодного") отверждения (~20°С) обычно проводят с использованием алифатических полиаминов или продуктов их конденсации с фенолом, формальдегидом и многоосновными карбоновыми кислотами; глубина отверждения обычно не превышает 65-70%; система достигает полной конверсии лишь при последующем прогревании при 50-100°С в течение 2-12 ч.
Рис.5. Классификация отвердителей для эпоксидных олигомеров
При высокотемпературном ("горячем") отверждении основные отвердители - ароматические полиамины (м-фенилендиамин, 4,4'-диаминодифенилметан, 4,4'-диаминодифенилсульфон), феноло- и мочевиноальдегидные смолы, ди- и поликарбоновые кислоты и их ангидриды (главным образом фталевый, метилтетрагидрофгалевый, гексагидрофталевый, малеиновый, эндометилентетрагидрофталевый (эндиковый) и их смеси); в качестве катализаторов иногда используют малолетучие третичные амины и их соли. Проводят горячее отверждение при 100-300°С в течение нескольких секунд (в тонких слоях) или нескольких часов. Отверждение ЭС обычно проводят при небольших температурах (20-100°С) при введении 7-25 массовых частей первичных алифатических ди- или полиаминов на 100 массовых частей ЭС, или при повышенных температурах (80-150°С) при введении 14-26 массовых частей ароматических диаминов или (при 140-160°С) при введении 40-80 массовых частей ангидридов дикарбоновых кислот. Для ускорения процесса отверждения применяют соускорители - третичные амины, дициандиамид и катализаторы на основе комплексов BF3. Для сравнения в табл. 2 приведены показатели диановых ЭС, отвержденных алифатичеким диэтилентриамином (ДЭТА), ароматическим м-фенилендиамином (м -ФДА) и малеиновым ангидридом (МА).
Таблица 2. Характеристики отвержденных эпоксидных смол различными отвердителями
Табличные данные показывают изменение свойств при применении различных типов отвердителей, что может быть связано с механизмами отверждения, при которых образуются функциональные группы. Рассмотрим более подробно механизмы отверждения эпоксидных смол. Большинство применяемых аминных отвердителей содержат концевые реакционноспособные группы. Это приводит к образованию сшитой структуры между молекулами эпоксидных олигомеров. Например, концевая аминогруппа (первичный амин) взаимодействует с эпоксидной группой, принадлежащей молекуле смолы, следующим образом: Когда образовавшаяся при этом вторичная аминогруппа соединяется с эпоксидной группой, принадлежащей второй молекуле смолы, то образуется межмолекулярная сшивка: Отверждающие агенты, содержащие вторичные аминогруппы, реагируют со смолой аналогичным образом. Для проведения полной сшивки эпоксидной смолы соотношение между количеством атомов водорода в аминогруппах отвердителя (первичных и вторичных) и числом эпоксидных групп в смоле должно быть 1:1. Химическая связь между атомами углерода и азота, возникающая при отверждении эпоксидной смолы аминами, устойчива к действию большинства неорганических кислот и щелочей. Однако, к воздействию органических кислот эта связь оказывается менее стабильной, чем межмолекулярные связи, образованные отвердителями других классов. Кроме того, электроизоляционные свойства аминоотвержденных эпоксидных смол уступают эпоксидным смолам с использованием других отверждающих агентов. Это связано с полярностью гидроксильных групп, образующихся при отверждении аминами. Третичные амины, которые являются основаниями Льюиса, отверждают эпоксидную смолу по иному механизму, чем первичные и вторичные амины. Их добавляют в смолу в небольшом нестехиометрическом количестве, подбираемом эмпирически. Критерием при этом служит получение материала с лучшими свойствами. Отверждающий агент работает здесь как катализатор, инициируя процесс анионной полимеризации: В результате гомополимеризации эпоксидной смолы образуется простой полиэфир. Простая эфирная связь (С-О-С) чрезвычайно стабильна к действию большинства кислот (как органических, так и неорганических) и щелочей. Отвержденная таким образом смола, кроме того, обладает большей теплостойкостью, чем отвержденная аминами. В качестве кислотных отвердителей наибольшее применение нашли циклические ангидриды карбоновых кислот, такие как фталевый, малеиновый, тримеллитовый, а также диангидриды пиромеллитовый, бензофенонтетракарбоновой кислоты. Отверждение с помощью ангидридов карбоновых кислот проводят при 120–180°С. Часто для ускорения процесса отверждения, который идет чрезвычайно медленно, вводят небольшое количество ускорителя. Существуют ангидридные отвердители, которые реагируют со смолой при нагреве выше 200°С. Механизм взаимодействия ангидридов кислот с эпоксидными смолами протекает с образованием сложных эфиров. Чтобы эта реакция произошла, требуется раскрытие ангидридного цикла. Небольшое количество протон-содержащих веществ (например, кислоты, спирты, фенолы и вода) или оснований Льюиса способствует его раскрытию. Образующиеся карбоксильные группы реагируют с эпоксидными группами по схеме: Теоретически, одна ангидридная группа вступает в реакцию с одной эпоксидной группой. Различия в свойствах ангидридов в большей степени проявляются при взаимодействии с эпоксидными группами, чем в случае катализа процесса гомополимеризации смолы с образованием простых полиэфирных связей. Для получения отвержденной смолы с оптимальными свойствами, что достигается увеличением степени завершенности реакции между ангидридными и эпоксидными группами, следует тщательно контролировать содержание гидроксильных групп в исходной смоле, а также проводить отверждение при повышенной температуре. Образующаяся в результате отверждения сложноэфирная группа устойчива к действию органических и некоторых неорганических кислот, но разрушается щелочами. Полученные материалы обладают большей термостабильностью и лучшими электроизоляционными свойствами, чем при использовании аминных отвердителей. Другим классом отвердителей являются фенол-формальдегидные (ФФС) и амино-альдегидные смолы (ААС), которые способны реагировать с гидроксильными группами ЭС, давая трехмерные продукты. Смеси ЭС и ФФС способны храниться месяцами и быстро отверждаться при температуре 150-200°С. Недостатком этих продуктов является выделение при реакции летучих продуктов конденсации (спирт и вода). Есть указания на то, что для получения высокотермостойких композиций содержание ФФС в композиции должно быть умеренным, а степень отверждения – максимальной. Сообщают о возможности применения в качестве отвердителей смеси ФФС с аминными и ангидридными отвердителями. Оптимизация свойств эпоксидных связующих достигается путем выбора отверждающей системы. Отвержденные эпоксидные смолы имеют микрогетерогенную структуру глобулярного типа, формирование которой наблюдается уже в жидкой фазе на начальных стадиях отверждения; размер частиц зависит от состава неотвержденной эпоксидной смолы и условий отверждения, уменьшаясь с возрастанием температуры. Выбор состава связующих на основе эпоксидных смол для композиционных материалов основан на том, что с уменьшением расстояния между узлами сетки растут температура стеклования, прочность при сжатии, химическая и термическая стойкость, но растет и хрупкость. Аналогично изменяются свойства отвержденных связующих при увеличении содержания ароматических циклов в молекуле эпоксидной смолы. По прочностным показателям продукты отверждения эпоксидных смол превосходят применяемые в промышленности материалы на основе других синтетических смол. Так, прочность при растяжении может достигать 140 МПа, при сжатии - 40 МПа, при изгибе -220 МПа; модуль упругости ~ 50 ГПа, также отвержденные диановые смолы имеют высокую температуру стеклования 55-170ºС, низкое водопоглощение (0,01-0,1%), высокие диэлектрические показатели, но малое удлинение при растяжении (0,5-6%). Отвержденные смолы на основе галогенированного дифенилолпропана и ароматических диаминов обладают низкой горючестью. В композиции на основе эпоксидной смолы перед отверждением обычно вводят пластификаторы, не содержащие реакционноспособных групп, и различные наполнители - порошки, высокопрочные и высокомодульные сплошные и рубленые волокна из ткани, стекловолокна и других материалов. Композиции холодного отверждения используют в качестве клеев, герметиков, заливочных компаундов, эпоксидных лаков, эмалей и др. защитных покрытий в случаях, когда по условиям эксплуатации нежелателен нагрев. Композиции горячего отверждения применяют в качестве дорожных покрытий, клеев, электроизоляционных и некоторых лакокрасочных материалов, но наиболее эффективным является применение эпоксидных смол в качестве связующих при изготовлении крупногабаритных изделий контактным способом с использованием тканей и матов из стекло- или углеволокна в качестве армирующих наполнителей, а также при производстве премиксов и препрегов. В табл. 3 представлены основные свойства ПКМ на основе эпоксидных связующих. Таблица 3. Свойства ПКМ на основе эпоксидных связующих
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-08-06; просмотров: 2985; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.227.140.251 (0.007 с.) |