Оптимум и пессимум частоты раздражения. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Оптимум и пессимум частоты раздражения.

Поиск

 

Н. Е. Введенский (1886) установил, что возбуждение и торможение — фазы единого нервного процесса, которые при определенных условиях переходят друг в друга. Переход возбуждения в торможение, и наоборот, зависит от частоты и силы раздражения и от уровня лабильности раздражаемой ткани. Значение частоты и силы раздражения было показано на нервно-мышечном препарате.Повышение частоты и силы раздражения до известного предела вызывает увеличение высоты тетанического сокращения скелетной мышцы. Наиболее благоприятная частота нервных импульсов, поступающих в скелетную мышцу, вызывает наибольшую высоту тетануса. Эта частота называется оптимальной, или оптимумом частоты. Оптимуму частоты соответствует такая частота, при которой каждое последующее раздражение застает скелетную мышцу в состоянии наибольшей возбудимости, наблюдающейся в экзальтационной фазе. Поэтому высота каждого одиночного сокращения возрастает. Наоборот, если каждое последующее раздражение застает скелетную мышцу в фазе абсолютной рефрактерности, то тетаническое сокращение мышцы резко уменьшается или не наступает. Эта чрезмерно большая частота — наихудшая, пессимальная, или пессимум частоты. Каждая волна возбуждения не только вызывает сокращение скелетной мышцы, но и сопровождается изменениями ее возбудимости и лабильности. Поэтому последующая волна возбуждения застает скелетную мышцу либо в состоянии экзальтационной фазы, обусловленной предыдущим раздражением (оптимум частоты), либо в абсолютной рефрактерной фазе, или интервале невозбудимости, созданном предыдущим раздражением (пессимум частоты). Оптимум частоты соответствует высокому уровню лабильности нерва и мышцы, а пессимум частоты — низкому уровню лабильности нерва, даже более низкому, чем лабильность мышцы. В результате предыдущих раздражений при пессимуме частоты лабильность нервно-мышечного препарата резко снижается и полностью задерживается переход волн возбуждения с нерва на мышцу, наступает торможение, тетанус отсутствует. Наиболее благоприятная сила раздражения, вызывающая максимальное тетаническое сокращение скелетной мышцы, называется оптимумом силы. Дальнейшее увеличение силы раздражения не только не повышает высоту сокращения мышц, а, наоборот, Снижает ее. При чрезмерно большой силе раздражения высота сокращения мышцы резко снижается или мышца не сокращается. Эта наихудшая сила раздражения называется пессимальной или пессимумом силы – также результат изменений возбудимости и лабильности, вызываемых предыдущими раздражениями.

 

№26 Понятие о торможении.

 

Торможение — нервный процесс, направленный на ослабление или полное прекращении того или иного вида деятельности организма. Его действие связано с уменьшением и подавлением условнорефлекторной активности. Возникновение торможения обусловлено действием разного рода воздействий, при этом оно может глобальным, распространяться на многие нервные структуры, и строго локальным. Среди отделов мозга, специализирующихся преимущественно на торможении других структур, выделяют переднюю таламокортикальную тормозную систему, тормозящий отдел ретикулярной формации нижней части мозгового ствола, хвостатое ядро.

 

№27Перефирическое и центральное торможение.

Центральное торможение

активный нервный процесс, возникающий в центральной нервной системе и приводящий к угнетению или предупреждению возбуждения. Выделяют постсинаптическое Торможение, связанное с воздействием специального медиатора на постсинаптическую мембрану нейрона, и пресинаптическое торможение, основанное на деполяризации пресинаптического нервного окончания, с которым контактирует др. нервное окончание аксона (см. Синапсы). Все виды торможения при условно-рефлекторной деятельности

Периферическое торможение впервые в своих исследованиях в 1845 году открыли немецкие ученые братья Эрнст и Эдуард Вебер. Они показали, что при раздражении периферической ветви блуждающего нерва, иннервирующей сердце, происходит уменьшение частоты сер-дечных сокращений и уменьшение сердечного выброса крови.

 

№28Первичное и вторичное торможение.

В центральной нервной системе тормозные нейроны есть в спинном мозге, в головном мозге (меньшее количество) и в коре головного мозга (большинство). В спинном мозге 2 вида тормозных нейронов (это тормозные вставочные нейроны):

клетки Реншоу - не обладают фоновой активностью и в покое не генерируют нервных импульсов. Они возбуждаются под действием: импульсов от афферентных нейронов, от эфферентных нейронов (альфа-мотонейронов спинного мозга), импульсов от вышележащих отделов головного мозга;

клетки Уилсона - обладают постоянной фоновой активностью, даже без раздражения (в покое) они генерируют нервные импульсы - постоянно тормозят активность альфа-мотонейронов спинного мозга.

В зависимости от последовательности включения тормозных клеток - эффект различен. Обычно - это торможение активности альфа-мотонейронов, но может быть увеличение активности альфа-мотонейронов (возвратное облегчение).

В головном мозге существуют отдельные клетки Реншоу и клетки Пуркинье, грушевидные нейроны мозжечка - они оказывают торможение внутри мозжечка, ядер среднего и продолговатого мозга, тем самым обеспечивается правильное распределение мышечного тонуса.

В коре головного мозга 4 вида тормозных клеток:

1. большие корзинчатые нейроны - 3, 4, 5 слои коры головного мозга, их аксоны сильно ветвятся и образуют сплетения на площади около 500 мкм. Они тормозят активность нейронов 3, 4, 5 слоев;

2. малые корзинчатые клетки нейроны - 2, 3 слои коры - их аксоны ветвятся на меньшей площади, около 50 мкм, и тормозят 2 и 3 слои;

3. нейроны с кистеобразным аксоном - 1 слой коры, образует аксон, на конце которого разветвление в виде кисти; тормозит клетки 1-го слоя;

4. канделяброобразные нейроны - на границе между 2 и 3 слоями, вниз от них идет аксон и дает несколько ответвлений вверх, тормозят активность всех слоев.

Первичное торможение осуществляется за счет выделения тормозного медиатора на окончаниях нервных клеток (ГАМК - гаммааминомаслянная кислота, глицин, таурин, серотонин и другие). Эти вещества вызывают гиперполяризацию постсинаптической мембраны и, как следствие, тормозной постсинаптический потенциал.

Различают 2 вида первичного торможения.

Пресинаптическое - развивается на мембране возбужденного синапса. Развивается в аксо-аксональном синапсе. Медиатор - гаммааминомаслянная кислота - он изменяет проницаемость клеточной мембраны для CL- и Са2+ (понижает ее). В результате на постсинаптической мембране тормозного синапса возникает явление стойкой деполяризации, затем - падение возбудимости и возбуждение по аксону не доходит до альфа-мотонейрона - блок проведения возбуждения. За счет снижение проницаемости для Са2+ снижается количество медиатора в возбужденном синапсе и, как следствие, на теле иннервируемой клетки нет возбуждающего постсинаптического потенциала.

Постсинаптическое торможение - обеспечивается за счет гаммааминомасляной кислоты и глицина. Тормозная клетка образует синапс на теле нейрона. На окончании тормозного нейрона выделяется тормозной медиатор, который вызывает гиперполяризацию постсинаптической мембраны. Возникает тормозной постсинаптический потенциал и величина возникшего постсинаптического потенциала уменьшается.

Вторичное торможение возникает в обычных возбудимых структурах и связано с процессом возбуждения.

Виды вторичного поражения.

Запредельное торможение - возникает в нейронах центральной нервной системы в том случае, когда поток информации к телу нейрона выше его работоспособности. Развивается резкое снижение возбудимости нейрона.

Парабиотическое торможение - возникает при действии сильных и длительно действующих раздражителей (парабиоз в тканях). Парабиоз - явление пограничного состояния между гибелью и жизнью ткани (резко падают все свойства ткани, основное свойство - фазное изменение лабильности). Если парабиотический фактор продолжает действовать, ткань гибнет.

Пессимальное торможение - возникает в синапсах центральной нервной системы при действии сильных и частых раздражителей.

Торможение вслед за возбуждением - угнетение нейронов после возбуждения. Результат того, что вслед за пиком потенциала действия возникает период следовой гиперполяризации, который характеризуется снижением возбудимости.

№29 постсинапсическое и гиперполяризационное торможение.

Постсинаптическое торможение - это снижение возбудимости постсинаптической мембраны нейрона, препятствующее распространению импульса.Нервный импульс в тормозных нейронах вызывает гиперполяризационный сдвиг потенциала, в результате чего уровень мембранного потенциала начинает сильнее отличаться от порогового потенциала, необходимого для генерации потенциала действия.Поэтому гиперполяризация постсинаптической мембраны называется тормозным постсинаптическим потенциалом.Механизм высвобождения медиатора в тормозных синапсах и возбуждающих синапсах, видимо, аналогичен. Тормозным медиатором в мотонейронах и некоторых других синапсах служит аминокислотаглицин. Медиатор, действуя на постсинаптическую мембрану, открывает поры, или каналы, через которые могут проходить все мелкие ионы. Если стенка поры несет электрический заряд, то он препятствует прохождению одноименно заряженных ионов.При одновременном возникновении возбуждающих и тормозных синаптических процессов амплитудавозбуждающего постсинаптического потенциала уменьшается в зависимости от амплитуды тормозного постсинаптического потенциала

 

Гиперполяризационное торможение

Его суть заключается в том, что увеличивается потенциал мембраны по отношению к покою, в связи с чем снижается способность клетки реагировать на раздражители. Возникшее явление характеризуется понижением возбудимости (рис. 4.3). Одним из проявлений этого вида является положительный следовой потенциал, который возникает после потенциала действия и связан с тем, что еще часть ионов К+ не возвращена в клетку (на наружной поверхности мембраны остается достаточно большое количество ионов К+). В этом состоянии наблюдается явление относительной рефрактерности, т.е уменьшение ответа клетки на раздражитель. Необходим более сильный стимул, чтобы клетку возбудить. Из состояния гиперполяризации труднее достичь критического уровня деполяризации, чем из состояния покоя (рис. 4.3). Такое торможение чаще всего развивается в связи с большим выходом К+ наружу и большим поступлением Cl- в клетку. Изменение проницаемости мембран для К+ и Cl-, которое приводит к гиперполяризации мембраны, происходит под влиянием гамма - аминомасляной кислоты (ГАМК), вещества которое вырабатывают специальные нервные клетки (клетки Реншоу); серотонина и некоторых других веществ. Эти вещества увеличивают проницаемость мембраны для К+ и Cl- и приводят к гиперполяризации мембраны (более -100 мв) - формируется тормозной потенциал. Клетка переходит в состояние пониженной возбудимости.

№30 Постсинаптическое и деполяризационное торможение.

Деполяризационное торможение

В основе его лежит механизм деполяризации мембраны, что приводит к утрате или существенному снижению способности реагировать на другие стимулы (клетка в состоянии возбуждения заторможена, т.е клетки не отвечают на действие других раздражителей

Разновидность деполяризационного торможения - парабиотическое торможение (торможение по Н.Е. Введенскому). Оно развивается в клетке под влиянием определенного вещества - парабиотика, которое меняет функциональное состояние клетки, нарушая ее функциональную лабильность. Основной причиной этого торможения является уменьшение функциональной лабильности клеток. Снижение лабильности характеризуется увеличением времени проведения импульсов, удлинением времени деполяризации и особенно реполяризации мембраны и следовых потенциалов.Парабиотик нарушает энергетические функции клеток: синтез и ресинтез АТФ, что замедляет работу Na-K насоса. Это приводит к изменению проницаемости мембраны для ионов и стойкой деполяризации.

Постсинаптическое торможение - это снижение возбудимости постсинаптической мембраны нейрона, препятствующее распространению импульса.Нервный импульс в тормозных нейронах вызывает гиперполяризационный сдвиг потенциала, в результате чего уровень мембранного потенциала начинает сильнее отличаться от порогового потенциала, необходимого для генерации потенциала действия.Поэтому гиперполяризация постсинаптической мембраны называется тормозным постсинаптическим потенциалом.Механизм высвобождения медиатора в тормозных синапсах и возбуждающих синапсах, видимо, аналогичен. Тормозным медиатором в мотонейронах и некоторых других синапсах служит аминокислотаглицин. Медиатор, действуя на постсинаптическую мембрану, открывает поры, или каналы, через которые могут проходить все мелкие ионы. Если стенка поры несет электрический заряд, то он препятствует прохождению одноименно заряженных ионов.При одновременном возникновении возбуждающих и тормозных синаптических процессов амплитудавозбуждающего постсинаптического потенциала.

 

№31 Формы постсинапсического торможения.

№32пресинапсическое гиперполяризациооное торможение.

№33Пересинапсическое деполяризациооное торможение.

№34 Функциональная морфология нейрона.

Нейрон (перикарион и отростки) окружен плазмолеммой, которая обладает способностью к проведению нервного импульса. Тело нейрона (перикарион) включает ядро и окружающую его цитоплазму (за исключением входящей в состав отростков).

Ядро нейрона - обычно одно, крупное, округлое, светлое, с мелкодисперсным хроматином (преобладанием эухроматина), одним, иногда 2-3 крупными ядрышками (см. рис. 99-102). Эти особенности отражают высокую активность процессов транскрипции в ядре нейрона.

Цитоплазма перикариона нейрона богата органеллами, а его плазмолемма осуществляет рецепторные функции, так как на ней находятся многочисленные нервные окончания (аксо-соматические синапсы), несущие возбуждающие и тормозные сигналы от других нейронов (см. рис. 99). Цистерны хорошо развитой гранулярной эндоплазматической сети часто образуют отдельные комплексы, которые на светооптическом уровне при окраске анилиновыми красителями имеют вид базофильных глыбок (см. рис. 99, 100, 102), в совокупности получивших название хроматофильной субстанции (старое название - тельца Ниссля, тигроидное вещество). Наиболее крупные из них обнаруживаются в мотонейронах (см. рис. 100). Комплекс Гольджи хорошо развит (впервые описан именно в нейронах) и состоит из множественных диктиосом, расположенных обычно вокруг ядра (см. рис. 101 и 102). Митохондрии - очень многочисленны и обеспечивают значительные энергетические потребности нейрона, лизосомальный аппарат обладает высокой активностью. Цитоскелет нейронов хорошо развит и включает все элементы - микротрубочки (нейротрубочки), микрофиламенты и промежуточные филаменты (нейрофиламенты). Включения в цитоплазме нейрона представлены липидными каплями, гранулами липофусцина (пигмента старения, или изнашивания), (нейро)меланина - в пигментированных нейронах.

Дендриты проводят импульсы к телу нейрона, получая сигналы от других нейронов через многочисленные межнейронные контакты (аксо-дендритные синапсы - см. рис. 99). В большинстве случаев дендриты многочисленны, имеют относительно небольшую длину и сильно вет-

вятся вблизи тела нейрона. Крупные стволовые дендриты содержат все виды органелл, по мере снижения их диаметра из них исчезают элементы комплекса Гольджи, а цистерны гранулярной эндоплазматической сети (хроматофильная субстанция) сохраняются. Нейротрубочки и нейрофиламенты многочисленны и располагаются параллельными пучками.

Аксон - длинный отросток, по которому нервные импульсы передаются на другие нейроны или клетки рабочих органов (мышц, желез). Он отходит от утолщенного участка тела нейрона, не содержащего хроматофильной субстанции, - аксонного холмика, в котором генерируются нервные импульсы; почти на всем протяжении он покрыт глиальной оболочкой (см. рис. 99). Центральная часть цитоплазмы аксона (аксоплазмы) содержит пучки нейрофиламентов, ориентированных вдоль его длины, а ближе к периферии располагаются пучки микротрубочек, цистерны гранулярной эндоплазматической сети, элементы комплекса Гольджи, митохондрии, мембранные пузырьки, сложная сеть микрофиламентов. Хроматофильная субстанция в аксоне отсутствует. Аксон может по своему ходу давать ответвления (коллатерали аксона), которые обычно отходят от него под прямым углом. В конечном участке аксон нередко распадается на тонкие веточки (терминальное ветвление). Аксон заканчивается специализированными терминалями (нервными окончаниями) на других нейронах или клетках рабочих органов.

№35 Свойства и функции нейрона.

Основные свойства нейрона — возбудимость и проводимость.

Возбудимость присуща клеткам всех тканей. Но у нервных клеток она очень высока. Раздражения вызывают в клетке ответную реакцию. Способность воспринимать раздражения и отвечать на них называется возбудимостью.

Раздражение вызывает в нейроне сложный процесс — возбуждение. Оно мгновенно охватывает весь нейрон, а затем распространяется на все нервыные клетки, с которыми соприкасается этот нейрон. Способность нейрона передавать возбуждение называется проводимостью. Из центральной нервной системы к органам передают возбуждение центробежные нейроны.

От органона в центральную нервную систему оно проводится по центростремительным нейронам. Тела нейронов лежат преимущественно в центральной нервной системе. Они серого цвета и образуют серое вещество головного и спинного мозга.

Возбуждение проводится с различной скоростью: от 0,5 до 120 м/сек. Быстрее всего оно передается к мышцам. Если в мышцу поступает поток нервных импульсов, то она сокращается.

При ходьбе мышцы ног попеременно сокращаются и расслабляются. Расслабление мышц происходит под влиянием торможения. В том случае, когда синапсы задерживают нервные импульсы, развивается процесс торможения. Нервные импульсы не доходят до мышцы и она расслабляется.

 

Основные функции нейрона — получение информации из организма и окружающей среды, анализ, хранение и передачи команд — нервных импульсов — к рабочему органу.

Тела нейронов образуют серое вещество головного и спинного мозга, а отростки — белое вещество и периферические нервы.

№36 Классификация нейронов

. Нейроны классифицируются по нескольким признакам:

1) по форме тела – звездчатые, веретенообразные, пирамидные и др.;

2) по локализации – центральные (расположены в ЦНС) и периферические (расположены вне ЦНС, а в спинномозговых, черепно-мозговых и вегетативных ганглиях, сплетениях, внутри органов);

3) по числу отростков – униполярные, биполярные и мультиполярные (рис. 3.3.2);

4) по функциональному признаку – рецепторные, эфферентные, вставочные.

№37 Способы кодирования информации в нервной системе.

№38Синапс.

№ 39 Механизмы синапсической передачи. Медиатор, находящийся в пузырьках выделяется в синаптическую щель с помощью экзоцитоза, (пузырьки подходят к мембране, сливаются с ней и разрываются, выпуская медиатор). Его выведение происходит небольшими порциями – квантами. Каждый квант содержит от 1000 до 10000 молекул нейромедиатора. Небольшое количество квантов выходит из окончания и в состоянии покоя. Когда нервный импульс, ᴛ.ᴇ. потенциал действия, достигает пресинаптического окончания, происходит деполяризация его пресинаптической мембраны. Открываются ее кальциевые каналы, и ионы кальция входят в синаптическую бляшку. Начинается выделœение большого количества квантов нейромедиатора. Молекулы медиатора диффундируют через синаптическую щель к постсинаптической мембране и взаимодействуют с ее хеморецепторами. В результате образования комплексов медиатор-рецептор в субсинаптической мембране начинается синтез так называемых вторичных посредников, в частности АМФ. Эти посредники активируют ионные каналы постсинаптической мембраны. По этой причине такие каналы называются хемозависимыми или рецепторуправляемыми. Т.е. они открываются при действии физиологически активных веществ на хеморецепторы. В результате открывания каналов изменяется потенциал субсинаптической мембраны. Такое изменение принято называть постсинаптическимпотенциалом.

В центральной нервной системе возбуждающими являются холин-, адрен-, дофамин-, серотонинœергические синапсы и некоторые другие. При взаимодействии их медиаторов с соответствующими рецепторами, открываются хемозависимые натриевые каналы. Ионы натрия входят в клетку через субсинаптическую мембрану. Происходит ее местная или распространяющаяся деполяризация. Эта деполяризация принято называть возбуждающимпостсинаптическимпотенциалом. Тормозными являются глицин- и ГАМК-ергические синапсы. При связывании медиаторов с хеморецепторами активируются калиевые или хлорные хемозависимые каналы. В результате ионы калия выходят из клетки через мембрану. Ионы хлора входят через нее. Возникает только местная гиперполяризация субсинаптической мембраны. Это принято называть тормознымпостсинаптическимпотенциалом.

Величина возбуждающего постсинаптического потенциала и тормозного постсинаптического потенциала определяется количеством квантов медиаторов, выделяющихся из терминаля, а следовательно, частотой неравных импульсов, ᴛ.ᴇ. синаптическая мембрана не подчиняется закону ʼʼвсœе или ничегоʼʼ. После прекращения поступления нервных импульсов выделившийся медиатор удаляется из синаптической щели тремя путями˸

1. Разрушается специальными ферментами, фиксированными на поверхности субсинаптической мембраны. В холинэргических синапсах это ацетилхолинэстераза. В адренергических, дофаминœергических, серетонинэргических – моноаминооксидаза и кетехол-О-метилтрансфераза.

2. Часть медиаторов возвращается в пресинаптическое окончание с помощью процесса обратного захвата (синтез нового медиатора - длительный процесс).

3. Наибольшее количество уносится межклеточной жидкостью.

Особенность передачи возбуждения через химические синапсы.˸

1. Возбуждение передается только в одном направлении, что способствует его точному распространению в центральной нервной системе.

2. Οʜᴎ обладают синаптической задержкой - ϶ᴛᴏ время, крайне важно е на выделœение медиаторов, его диффузию и процессы в субсинаптической мембране.

3. В синапсах происходит трансформация, ᴛ.ᴇ. изменение частоты нервных импульсов.

4. Стоит сказать, что для них характерно явление суммации, ᴛ.ᴇ. чем больше частота импульса, тем выше амплитуда возбуждающего тормозного постсинаптических потенциалов

5. Синапсы обладают низкой лабильностью.

№40 Электрический механизм синапсической передачи. Процесс передачи сигнала начинается с активации кальциевых каналов цресинаптичнои мембраны под действием ПД распространяется по отростку нейрона. результате ионы Са 2 поступают из межклеточной среды в пресинаптическое окончания и способствуют транспорта везикул к пресинаптической мембраны и выделению их содержания в синаптическую щель. Этот процесс происходит за счет активации ионами кальция внутриклеточных транспортных структур (нитей актина, микротрубочек, микрофиламентов). Выделение медиатора в синаптическую щель происходит отдельными порциями — квантами. Каждый квант соответствует порции медиатора, которая содержится в одной везикулы, и включает несколько тысяч молекул медиатора. А всего во время возбуждения в синаптическую щель выливается несколько сотен квантов медиатора. Молекулы медиатора, выделившегося в синаптическую щель, диффундируют к постсинаптической мембраны и взаимодействуют с ее специфическими белками — рецепторами. Результатом этого взаимодействия является увеличение проницаемости хемочутливих ионных каналов постсинаптической мембраны для ионов натрия, калия, хлора, кальция, которые находятся в большой концентрации в межклеточной жидкости и внутри цитоплазмы. Проникновение ионов через мембрану ведет либо к деполяризации или к гиперполяризации постсинаптической мембраны — т.е. генерируется постсинаптический соответствии возбуждающий или тормозной потенциал. Этот потенциал является локальной электрической ответом мембраны, а значит — подлежит закона силы и способен к суммации возбуждений.Итак, на втором этапе синаптической передачи химический сигнал снова преобразуется в электрическую ответ.

 

№41 Химический механизм синапсической передачи. Поступление нервного импульса в синаптическую бляшку вызывает деполяризациюпресинаптической мембраны и повышение ее проницаемости для ионов кальция в результате того, что открываются потенциал-зависимые кальциевые каналы. Ионы кальция входят в синаптическую бляшку и вызывают слияние синаптических пузырьков с пресинаптической мембраной. Медиатор из синаптических пузырьков попадает в синаптическую щель. Весь этот процесс называется электросекреторным сопряжением. После высвобождения медиатора материал пузырьков используется для образования новых, заполняемых молекулами медиатора.

Молекулы медиатора диффундируют через синаптическую щель (примерно за 0,5 мс) и связываются с рецепторами на постсинаптической мембране. При этом изменяется конфигурация молекулы рецептора, что приводит к открытию ионных каналов и поступлению в постсинаптическую клетку ионов, вызывающих сдвиг мембранного потенциала постсинаптической мембраны (постсинаптический потенциал - деполяризационный (возбуждающие синапсы) или гиперполяризационный (тормозные синапсы)) в зависимости от вида медиатора и рецептора. Молекулы медиатора сразу же удаляются из синаптической щели либо путем их реабсорбции пресинаптической мембраной, либо путем диффузии из щели или ферментативным гидролизом.

Промежуток времени между моментом поступления потенциала действия к пресинаптическому окончанию и началом смещения заряда постсинаптической мембраны называется синаптической задержкой.Для проведения нервного импульса через химический синапс необходимо наличие ионов кальция, иначе высвобождение медиатора не происходит.

Механизм действия ионов кальция в пресинаптических окончаниях до сих пор неизвестен. Предполагают, что в состоянии покоя происходит взаимное электростатическое отталкиваниесинаптических пузырьков и пресинаптической мембраны, поскольку обе структуры несут отрицательные заряды. При возбуждении, когда ионы кальция Са++, несущие двойной положительный заряд, входят в нервное окончание, они могут экранировать фиксированный отрицательный заряд пресинаптической мембраны, что позволяет пузырькам приблизиться к ней

 

№42 и №43 Временная и пространственная суммация синапсической передачи. Имеется 2 вида суммации: временная и пространственная.

Временная - возникает ответная реакция при действии нескольких следующих друг за другом раздражителей. Механизм: суммируются возбуждающие постсинаптические потенциалы рецептивного поля одного рефлекса. Происходит суммация во времени потенциалов одних и тех же групп синапсов.

Пространственная суммация - возникновение ответной реакции при одновременном действии нескольких подпороговых раздражителей. Механизм: суммация возбуждающего постсинаптического потенциала от разных рецептивных полей. Суммируются потенциалы разных групп синапсов.

Центральное облегчение - объясняется особенностями строения нервного центра. Каждое афферентное волокно входя в нервный центр иннервирует определенное количество нервных клеток. Эти нейроны - нейронный пул. В каждом нервном центре много пулов. В каждом нейронном пуле - 2 зоны: центральная (здесь афферентное волокно над каждым нейроном образует достаточное для возбуждения количество синапсов), периферическая или краевая кайма (здесь количество синапсов недостаточно для возбуждения). При раздражении возбуждаются нейроны центральной зоны. Центральное облегчение: при одновременном раздражении 2-х афферентных нейронов ответная реакция может быть больше арифметической суммы раздражения каждого из них, т. к. импульсы от них отходят к одним и тем же нейронам периферической зоны.

Окклюзия - при одновременном раздражении 2-х афферентных нейронов ответная реакция может быть меньше арифметической суммы раздражения каждого из них. Механизм: импульсы сходятся к одним и тем же нейронам центральной зоны. Возникновение окклюзии или центрального облегчения зависит от силы и частоты раздражения. При действии оптимального раздражителя, (максимального раздражителя (по силе и частоте) вызывающего максимальную ответную реакцию) - появляется центральное облегчение. При действии пессимального раздражителя (с силой и частотой вызывающих снижение ответной реакции) - возникает явление окклюзии.

Посттетаническая потенция - усиление ответной реакции, наблюдается после серии нервных импульсов. Механизм: потенциация возбуждения в синапсах;

Рефлекторное последействие - продолжение ответной реакции после прекращения действия раздражителя:

Кратковременное последействие - в течение нескольких долей секунды. Причина - следовая деполяризация нейронов;

длительное последействие - в течение нескольких секунд. Причина: после прекращения действия раздражителя возбуждение продолжает циркулировать внутри нервного центра по замкнутым нейронным цепям.

Трансформация возбуждения - несоответствие ответной реакции частоте наносимых раздражений. На афферентном нейроне происходит трансформация в сторону уменьшения из-за низкой лабильности синапса. На аксонах эфферентного нейрона, частота импульса больше частоты наносимых раздражений. Причина: внутри нервного центра образуются замкнутые нейронные цепи, в них циркулирует возбуждение и на выход из нервного центра импульсы подаются с большей частотой.

Высокая утомляемость нервных центров - связана с высокой утомляемостью синапсов.

Тонус нервного центра - умеренное возбуждение нейронов, которое регистрируется даже в состоянии относительного физиологического покоя. Причины: рефлекторное происхождение тонуса, гуморальное происхождение тонуса (действие метаболитов), влияние вышележащих отделов центральной нервной системы.

№44 Интегративная функция нейрона. Общее изменение мембранного потенциала нейрона является результатом сложного взаимодействия (интеграции) местных ВПСП и ТПСП всех многочисленных активированных синапсов на теле и дендритах клетки. На мембране нейрона происходит процесс алгебраического суммирования положительных и отрицательных колебаний потенциала. При одновременной активации нескольких возбуждающих синапсов общий ВПСП нейрона представляет собой сумму отдельных местных ВПСП каждого синапса. При одновременном возникновении двух различных синаптических влияний — ВПСП и ТПСП — происходит взаимное вычитание их эффектов. В конечном итоге реакция нервной клетки определяется суммой всех синаптических влияний. Преобладание тормозных синаптических воздействий приводит к гиперполяризации мембраны и торможению деятельности клетки. При сдвиге мембранного потенциала в сторону деполяризации повышается возбудимость клетки. Ответный разряд нейрона возникает лишь тогда, когда изменения мембранного потенциала достигают порогового значения — критического уровня деполяризации. Для этого величина ВПСП клетки должна составлять примерно 10 мв.

В крупных (афферентных и эфферентных) нейронах возбудимость различных участков мембраны неодинакова. В области начального сегмента нервной клетки (аксонного холмика и начальной немиелинизированной части аксона) имеется низкопороговая зона, мембрана которой обладает в несколько раз более высокой возбудимостью, чем на других участках клетки (порог возбудимости мембраны начального сегмента равен 10 мв, а порог возбудимости соматодендритической мембраны—20—30 мв). В этой зоне с момента достижения критического уровня деполяризации начинается лавинообразное вхождение натрия в клетку и регистрируется потенциал действия (ПД). В ПД различают кратковременную высоковольтную часть, или спайк (пик), и длительные низкоамплитудные колебания — следовые потенциалы. ПД мотонейронов имеют амплитуду пика около 80 — 100 мв и длительность его около 1,5 мсек.

Эффекторная функция нейрона. С появлением ПД, который в отличие от местных изменений мембранного потенциала (ВПСП и ТПСП) является распространяющимся процессом, нервный импульс начинает проводиться от тела нервной клетки вдоль по аксону к другой нервной клетке или рабочему органу, т. е. осуществляется эффекторная функция нейрона. Синапсы, расположенные ближе к возбудимой низкопороговой зоне на теле клетки (аксосоматические), оказывают большее влияние на возникновение потенциала действия, чем более удаленные, расположенные на окончаниях дендритов (аксодендритические). Импульсы, приходящие через аксосоматический синапс, как правило, вызывают ответный разряд нейрона, а импульсы, действующие на аксодендритический синапс —лишь подпороговое изменение его возбудимости. Так, разряды мотонейронов спинного мозга и пирамидных нейронов коры, вызывающие двигательные реакции организма, являются ответом на специфические аксосоматические влияния. Но возникнет ли этот ответ или нет, определяется характером воздействий, поступающих через аксодендритические синапсы от других нервных путей. Так складываются адекватные реакции, зависящие от многих раздражении, действующих на организм в данный момент времени, и осуществляется тонкое приспособление поведения к меняющимся условиям внешней среды.Процессы, происходящие в активном нейроне, можно представить в виде следующей цепи: потенциал действия в пресинаптическом окончании предыдущего нейрона —> выделение медиатора в синаптическую щель —> увеличение проницаемости постсинаптической мембраны —> ее деполяризация (ВПСП) или гиперполяризация (ТПСП) —> взаимодействие ВПСП и ТПСП на мембране сомы и дендритов нейрона —> сдвиг мембранного потенциала в случае преобладания возбуждающих влияний —> достижение критического уровня деполяризации —> возникновение потенциала действия в низкопороговой зоне (мембране начального сегмента) нейрона —> распространение потенциала действия вдоль по аксону (процесс проведения нервного импульса) —> выделение медиатора в окончаниях аксона (передача нервного процесса на следующий нейрон или на рабочий орган).

№45Проводниковая функция нейрона. Законы проведения возбуждения по нейрону. Основной функцией аксонов является проведение импульсов, возникающих в нейроне. Аксоны могут быть покрыты миелиновой оболочкой (миелиновые волокна) или лишены ее (безмиелиновые волокна). Миелиновые волокна чаще встречаются в двигательных нервах, безмиелиновые – в автономной нервной системе. Отдельное миелиновое волокно состоит из осевого цилиндра, покрытого миелиновой оболочкой, образованной Шванновскими клетками. Осевой цилиндр имеет мембрану и аксоплазму. Миелиновая оболочка является прод


Поделиться:


Последнее изменение этой страницы: 2016-08-01; просмотров: 2123; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.119.19.219 (0.017 с.)