Проектування мережі згідно завдання та її обгрунтування 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Проектування мережі згідно завдання та її обгрунтування

Поиск

 

 

Схеми планів розміщення обладнання комп’ютерних мереж зображені на кресленнях ДТЗЕ. 5.05010201 КПП1, ДТЗЕ. 5.05010201 КПП2 та ДТЗЕ. 5.05010201 КПП3.

Беспроводная сеть, которую планируется реализовать, будет основана на новом стандарте IEEE 802.11n.

Сеть будет управляться сервером с помощью беспроводного коммутатора. Так как беспроводной коммутатор и точки доступа распространяют сигнал сферически, планируется установить по три точки доступа на втором и четвёртом этажах по всей площади общежития, а беспроводной коммутатор - на третьем этаже, в центре, для охвата каждой точки доступа. Схема беспроводной сети представлена на рисунке 1.3

Организация сети доступа:

- организовать сеть беспроводного доступа, для чего приобрести и установить 6 точек доступа DWL-8600AP по 3 точки на первом и третьем этажах;

- беспроводной коммутатор DWS-4026 разместить в рабочем помещении на втором этаже;

- настроить беспроводной коммутатор, определить точки доступа, обеспечить мониторинг и защиту сети;

- организация подключения к сети Internet. Доступ к сети Internet организовать через широкополосный /DSL модем.

 

 

Рисунок 1.3 – Схема беспроводной сети

 

В настоящее время развитие традиционных коммутационных систем практически прекращено. В основном идет процесс адаптации к сетям нового поколения.

 

Для максимального захвата рынка и значительного увеличения доходов от услуг телекоммуникаций требуется не только модернизация телекоммуникационной сети, но и внедрение новых технологий, необходимое для предоставления всего спектра современных услуг для всех абонентов.

Необходимость и актуальность организации сети беспроводного доступа, на базе технологии Wi-Fi, обусловлена растущей потребностью студентов к повышению уровня информатизации. Уровень информатизации можно повысить с помощью современных услуг связи: высокоскоростной доступ в Интернет, компьютерная сеть.

Для удовлетворения потребности будет использоваться оборудование на базе стандарта 802.11n (Wi-Fi).

Проект беспрводного доступа Wi-Fi в базируется на оборудовании c поддерLCDой стандарта 802.11n, получившим сертификат Wi-Fi. Wi-Fi покрывает всю территорию ои обьединяет всех пользователей в единую сеть с доступом в Интернет. Сеть осуществляется установленными по всей территории беспроводными унифицированными точками доступа, управляемыми беспроводным коммутатором.

Точка доступа - D-Link DWL-8600AP - унифицированная беспроводная точка доступа следующего поколения, соответствующая стандарту IEEE 802.11n. Гибкая в управлении и мощная, данная точка доступа предназначена для развертывания сетей в режиме автономной беспроводной точки доступа или в режиме управляемой точки доступа, управление которой осуществляется при подключении к беспроводному коммутатору. Предприятия могут начать работу с организации сети с помощью одной интеллектуальной точки доступа DWL-8600AP, предоставляющей ряд расширенных функций LAN, а затем в любое время перейти к централизованной системе управления после подключения аналогичной точки доступа DWL-8600AP к унифицированному проводному/беспроводному коммутатору D-Link.

Стандарт 802.11n увеличивает пропускную способность в 6 раз больше по сравнению с сетями стандарта 802.11a/g. Точка доступа DWL-8600AP является обратно совместимой с устройствами стандарта 802.1a/b/g и позволяет настройку 2x2:2* в обоих направлениях Tx/Rx.

Технология Multiple In Multiple Out (MIMO) и каналы с увеличенной пропускной способностью увеличивают физическую скорость передачи данных при использовании стандарта 802.11n. MIMO обеспечивает одновременную передачу нескольких сигналов с помощью нескольких антенн вместо одной.

Использование DWL-8600AP на предприятии подготавливает платформу для будущего поколения беспроводных устройств и мобильных приложений.

DWL-8600AP поддерживает функцию APSD (Автоматический переход в режим сохранения энергии) по расписанию и вне расписания. Выполняемая вне расписания функция APSD (U-APSD) является более эффективным методом управления питанием по сравнению с функцией Power Save Polling 802.11. Основным преимуществом функции U-APSD является возможность синхронизации передачи и получения голосовых фреймов с точкой доступа, таким образом, устройство может переходить в режим сохранения энергии в случае, когда не выполняется отправка или прием пакетов. DWL-8600AP является полностью совместимой с устройствами стандарта 802.3af даже в режиме максимально потребляемой мощности. В отличие от точки доступа стандарта 802.11n других производителей, которым требуется PoE или 802.3at при работе обеих частот, DWL-8600AP обеспечивает непрерывную поддерLCDу энергосберегающей технологии D-Link Green.

Коммутаторы DWS-4026 автоматически настраивают каждую подключенную точку доступа DWL-8600AP, таким образом, во время установки не требуется настройка. При замене DWL-8600AP выполняется автоматическая настройка точки доступа с теми же параметрами, что и у предыдущего устройства, что значительно упрощает процесс замены.

DWL-8600AP поддерживает набор встроенных функций, позволяющий администраторам организовать защищенную сеть и подключиться к любому коммутатору и маршрутизатору, совместимому с устройствами Ethernet. Расширенные функции беспроводной сети, поддерживаемые точкой доступа, включают: WEP-шифрование данных, безопасность WPA/WPA2, фильтрация MAC-адресов, балансировка нагрузки между точками доступа, QoS/WMM (Wireless Media) и обнаружение несанкционированных точек доступа. DWL-8600AP поддерживает возможность локального хранения настроек безопасности. Можно расширить беспроводные подключения путем добавления нескольких точек доступа DWL-8600AP к другим точкам доступа с поддерLCDой стандарта 802.11a/g/n. Благодаря функции AP Clustering можно объединить до 8 точек доступа для удобства управления и настройки всех точек доступа. Предприятия, не требующие сложной сетевой инфраструктуры, могут использовать DWL-8600AP для установки беспроводной сети без дополнительного аппаратного обеспечения.

В качестве альтернативного варианта DWL-8600AP может работать совместно с унифицированным проводным/беспроводным коммутатором. В данном режиме несколько точек доступа DWL-8600AP могут быть подключены непосредственно или опосредованно к одному из данных коммутаторов для обеспечения высокого уровня безопасности и беспроводной мобильности. При подключении к этим коммутаторам каждая точка доступа DWL-8600AP автоматически настраивается на оптимальный радиочастотный канал и выходную мощность передатчика, обеспечивая беспроводных клиентов сигналом наилучшего качества как в полосе 2,4ГГц, так и в полосе 5ГГц, предоставляя непрерывное беспроводное соединение.

DWL-8600AP обеспечивает максимальную скорость беспроводного соединения для каждого из частотных диапазонов. При одновременной работе в двух диапазонах частот можно создать две сети, использующие полную полосу пропускания беспроводного канала, что позволит повысить общую производительность беспроводной сети. Кроме того, DWL-8600AP остается полностью обратно совместимой с оборудованием стандарта 802.11b, работающим на частоте 2,4ГГц.

Большинство из существующих контролеров сети LAN осуществляет централизованную обработку трафика, что иногда вызывает его неоправданную задерLCDу. Точка доступа DWL-8600AP – при подключении к коммутатору DWS-4026 – предоставляет администраторам ряд дополнительных функций. В зависимости от беспроводного приложения, беспроводной трафик может направляться обратно к коммутатору в целях обеспечения общей безопасности или локально перенаправляться к точке доступа для оптимальной производительности. Точка доступа данной серии предоставляет администраторам максимальную гибкость управления, благодаря опциям перенаправления гостевого трафика к коммутатору для централизованного управления безопасностью и перенаправления VoIP-трафика непосредственно к точке доступа для оптимальной производительности. Более того, DWL-8600AP поддерживает функции AP Clustering и Wireless Distribution System (WDS). Функция WDS позволяет точке доступа работать в режиме беспроводного моста, объединяя две различные сети без необходимости подключения кабеля.

DWL-8600AP непрерывно сканирует оба диапазона частот и связанные с ними каналы для обнаружения несанкционированных подключений, обеспечивая при этом соединение для мобильных клиентов. Если обнаружено несанкционированное подключение, точка доступа отправляет отчет коммутатору DWS-4026, который ей управляет. Используя управляющую консоль, администратор может определить несанкционированную точку доступа и предпринять соответствующие действия. DWL-8600AP поддерживает такие функции как 64/128/152-битное WEP-шифрование данных, WPA/WPA2 и Multiple SSID для каждого радиочастотного канала. При подключении к коммутатору DWS-4026 эти функции наряду с фильтрацией MAC-адресов и запретом широковещания SSID могут использоваться для настройки параметров безопасности и ограничения доступа во внутреннюю сеть извне. DWL-8600AP поддерживает 802.1Q VLAN Tagging и WMM (Wi-Fi Multimedia) для передачи данных таких приложений как VoIP и потоковое аудио/видео с заданным приоритетом.

Беспроводной коммутатор - серия коммутаторов DWS-4026 включает в себя унифицированные проводные/беспроводные коммутаторы Gigabit Ethernet следующего поколения, поддерживающие ряд расширенных функций и стандарт 802.11n. Благодаря возможности управления до 64 беспроводных точек доступа DWL-8600AP и до 256 точек доступа DWL-8600AP в кластере коммутаторов, DWS-4026 является полнофункциональным и экономичным решением для среднего и крупного бизнеса и провайдеров услуг. Коммутатор DWS-4026 поддерживает гибкие функции управления и, в зависимости от требований клиента, используется в качестве беспроводного контроллера в базовой/беспроводной сети или гигабитного коммутатора уровня 2+ с поддерLCDой PoE для конечных пользователей. С помощью настройки централизованного управления WLAN и функций управления, DWS-4026 позволяет сетевым администраторам поддерживать управление, безопасность, резервирование и отказоустойчивость, необходимые для простого и эффективного масштабирования и управления сетями.

Большинство из существующих контроллеров сети LAN осуществляет централизованную обработку трафика, что иногда вызывает его неоправданную задерLCDу. Коммутаторы DWS-4026 предоставляют пользователям дополнительные функции. В зависимости от беспроводного приложения, беспроводной трафик может направляться обратно к коммутатору в целях обеспечения большей безопасности или локально перенаправляться к точке доступа для оптимальной производительности. Коммутаторы данной серии предоставляют администраторам максимальную гибкость благодаря опциям туннелирования трафика клиента к коммутатору для централизованного управления безопасностью и перенаправления трафика непосредственно от точки доступа для оптимальной производительности. DWS-4026 поддерживает новейшую функцию Wireless Intrusion Detection System (WIDS), предназначенную для обнаружения несанкционированных точек доступа и несанкционированных клиентов, а также различных угроз безопасности беспроводной сети. С помощью функции WIDS администраторы могут обнаружить различные угрозы и использовать сканирование радиочастотных каналов для обзора беспроводной сети в целях предотвращения любых потенциальных угроз безопасности. Другими функциями безопасности являются WPA/WPA2 Enterprise, 802.11i, адаптивный портал и аутентификация на основе MAC-адресов. Для проводных клиентов DWS-4026 использует функцию Dynamic ARP Inspection (DAI) и DHCP Snooping для обеспечения максимальной безопасности. Совместное использование функций Dynamic ARP Inspection (DAI) и DHCP Snooping предотвращает угрозы самого высокого уровня, например, “man-in-the-middle” и ARP poisoning. Благодаря поддерLCDе остальных расширенных функций безопасности, таких как управление доступом 802.1X, предотвращение атак DoS, управление широковещательным штормом и защищенный порт, DWS-4026 обеспечивает надежную и централизованную безопасность, предоставляя максимальную отказоустойчивость сети.

Беспроводные клиенты могут воспользоваться преимуществами гибкого и непрерывного роуминга между точками доступа, управляемыми коммутатором DWS-4026 даже в том случае, если они не находятся в одной подсети. Так как DWS-4026 использует различные механизмы, такие как предварительная аутентификация и кэширование ключей, беспроводные клиенты могут свободно перемещаться в зоне действия сети без необходимости повторной аутентификации. Быстрый роуминг осуществляется без разрыва соединения, обеспечивая надежную работу соединения для таких мобильных приложений, как беспроводная IP-телефония и беспроводное подключение КПК. Более того, DWS-4026 поддерживает функцию туннелирования между точками доступа, которая используется для поддерLCDи роуминга уровня 3 для беспроводных клиентов без перенаправления каких-либо данных трафика к унифицированному коммутатору. Это поможет значительно оптимизировать сетевой трафик и сохранить полосу пропускания.

DWS-4026 разработан и оптимизирован для трафика Voice over Wireless, благодаря таким функциями, как Auto-VoIP и Voice VLAN. Функция Auto-VoIP согласовывает потоки VoIP и предоставляет им обслуживание более высокого класса, чем для обычного трафика. Оборудование VoIP использует популярные протоколы управления вызовом, такие как SIP, H.323 и SCCP. Функция Voice VLAN позволяет портам коммутатора передавать голосовой трафик с определенным приоритетом, уровень приоритета обеспечивает разделение речевого трафика и трафика данных с высоким приоритетом, приходящих на порт. Voice QoS позволяет администраторам назначать приоритет трафику, чувствительному к задерLCDам, и сохранять его целостность.

Помимо этого, DWS-4026 поддерживает функцию формирования трафика, которая помогает упорядочить пакеты трафика с течением времени, таким образом, скорость передаваемого трафика ограничена. Другими расширенными функциями QoS являются: управление полосой пропускания на основе потока, минимальная гарантия по полосе пропускания и CoS 802.1p. Все эти функции помогают сохранить сетевой трафик соответствующим образом.

DWS-4026 поддерживает функцию «самовосстановления» сети, увеличивающей отказоустойчивость беспроводной сети. Чтобы восполнить недостаточную зону покрытия в результате выхода из строя точки доступа (например, из-за сбоя питания), коммутатор автоматически увеличивает выходную мощность передатчика соседних точек доступа, чтобы увеличить их зону покрытия. Для обеспечения непрерывного подключения существующих клиентов, коммутатор выполняет балансировку нагрузки между точками доступа, когда сетевой трафик достигает определенного порогового значения. В то же время коммутатор отклоняет подключение новых клиентов к точке доступа для того, чтобы избежать перегрузки полосы пропускания. Благодаря функции «самовосстановления» сети и балансировке нагрузки между точками доступа, коммутатор DWS-4026 может эффективно управлять полосой пропускания, оптимизировать трафик WLAN и обеспечить зону максимального покрытия.

Помимо функционирования в качестве управляющего устройства в беспроводной коммутации, DWS-4026 может также использоваться как стандартный проводной коммутатор уровня 2+ с расширенным функционалом, включая поддерLCDу динамической маршрутизации пакетов (RIPv1/v2), функции безопасности ACL, многоуровневого качества обслуживания (QoS), VLAN, IGMP/MLD Snooping. Помимо этого, коммутаторы поддерживают оптические порты 10-Gigabit. Всё это позволяет предприятию объединять беспроводную сеть с проводной сетевой инфраструктурой. При замене существующей инфраструктуры 10/100 Мбит/с для подключения настольных компьютеров на гигабитное подключение можно использовать коммутатор DWS-4026 в качестве устройства управления беспроводной сетью, коммутатора LAN или универсального устройства, выполняющего функции проводного коммутатора и контроллера беспроводной сети.

Несколько коммутаторов DWS-4026 могут объединяться в кластер, позволяя администраторам настройку и управление всех коммутаторов с помощью одного коммутатора «Мастера». Помимо этого, в кластере можно управлять информацией обо всех точках доступа, а также клиентах, связанных с ними. Это значительно упрощает управление и позволяет снизить усилия, затрачиваемые на обслуживание при масштабировании сети.

802.11n по скорости передачи сравнима с проводными стандартами. Максимальная скорость передачи стандарта 802.11n примерно в 5 раз превышает производительность классического Wi-Fi.

Можно отметить следующие основные преимущества стандарта 802.11n:

– большая скорость передачи данных (около 300 Мбит/с);

– равномерное, устойчивое, надежное и качественное покрытие зоны действия станции, отсутствие непокрытых участков;

– совместимость с предыдущими версиями стандарта Wi-Fi.

Недостатки:

– большая мощность потребления;

– два рабочих диапазона (возможная замена оборудования);

– усложненная и более габаритная аппаратура.

Увеличение скорости передачи в стандарте IEEE 802.11n достигается, во-первых, благодаря удвоению ширины канала с 20 до 40 МГц, а во-вторых, за счет реализации технологии MIMO.

Технология MIMO (Multiple Input Multiple Output) предполагает применение нескольких передающих и принимающих антенн. По аналогии традиционные системы, то есть системы с одной передающей и одной принимающей антенной, называются SISO (Single Input Single Output).

Стандарт IEEE 802.11n основан на технологии OFDM-MIMO. Очень многие реализованные в нем технические детали позаимствованы из стандарта 802.11a, однако в стандарте IEEE 802.11n предусматривается использование как частотного диапазона, принятого для стандарта IEEE 802.11a, так и частотного диапазона, принятого для стандартов IEEE 802.11b/g. То есть устройства, поддерживающие стандарт IEEE 802.11n, могут работать в частотном диапазоне либо 5, либо 2,4 ГГц.

Передаваемая последовательность делится на параллельные потоки, из которых на приемном конце восстанавливается исходный сигнал. Здесь возникает некоторая сложность — каждая антенна принимает суперпозицию сигналов, которые необходимо отделять друг от друга. Для этого на приемном конце применяется специально разработанный алгоритм пространственного обнаружения сигнала. Этот алгоритм основан на выделении поднесущей и оказывается тем сложнее, чем больше их число. Единственным недостатком использования MIMO является сложность и громоздкость системы и, как следствие, более высокое потребление энергии.Для обеспечения совместимости MIMO-станций и традиционных станций предусмотрено три режима работы: унаследованный режим (legacy mode), смешанный режим (mixed mode), режим зеленого поля (green field mode).

Каждому режиму работы соответствует своя структура преамбулы — служебного поля пакета, которое указывает на начало передачи и служит для синхронизации приемника и передатчика. В преамбуле содержится информация о длине пакета и его типе, включая вид модуляции, выбранный метод кодирования, а также все параметры кодирования. Для исключения конфликтов в работе станций MIMO и обычных (с одной антенной) во время обмена между станциями MIMO пакет сопровождается особой преамбулой и заголовком. Получив такую информацию, станции, работающие в унаследованном режиме, откладывают передачу до окончания сеанса между станциями MIMO. Кроме того, структура преамбулы определяет некоторые первичные задачи приемника, такие как оценка мощности принимаемого сигнала для системы автоматической регулировки усиления, обнаружение начала пакета, смещение по времени и частоте.

Режимы работы станций MIMO - унаследованный режим. Этот режим предусмотрен для обеспечения обмена между двумя станциями с одной антенной. Передача информации осуществляется по протоколам 802.11а. Если передатчиком является станция MIMO, а приемником - обычная станция, то в передающей системе используется только одна антенна и процесс передачи идет так же, как и в предыдущих версиях стандарта Wi-Fi. Если передача идет в обратном направлении - от обычной станции в многоантенную, то станция MIMO использует много приемных антенн, однако в этом случае скорость передачи не максимальная. Структура преамбулы в этом режиме такая же, как в версии 802.11а.

Смешанный режим. В этом режиме обмен осуществляется как между системами MIMO, так и между обычными станциями. В связи с этим системы MIMO генерируют два типа пакетов, в зависимости от типа приемника. С обычными станциями работа идет медленно, поскольку они не поддерживают работу на высоких скоростях, а между MIMO — значительно быстрее, однако скорость передачи ниже, чем в режиме зеленого поля. Преамбула в пакете от обычной станции такая же, что и в стандарте 802.11а, а в пакете MIMO она немного изменена. Если передатчиком выступает система MIMO, то каждая антенна передает не целую преамбулу, а циклически смещенную. За счет этого снижается мощность потребления станции, а канал используется более эффективно. Однако не все унаследованные станции могут работать в этом режиме. Дело в том, что если алгоритм синхронизации устройства основан на взаимной корреляции, то произойдет потеря синхронизации.

Режим зеленого поля. В этом режиме полностью используются преимущества систем MIMO. Передача возможна только между многоантенными станциями при наличии унаследованных приемников. Когда идет передача MIMO-системой, обычные станции ждут освобождения канала, чтобы избежать конфликтов. В режиме зеленого поля прием сигнала от систем, работающих по первым двум схемам, возможен, а передача им - нет. Это сделано для того, чтобы исключить из обмена одноантенные станции и тем самым повысить скорость работы. Пакеты сопровождаются преамбулами, которые поддерживаются только станциями MIMO. Все эти меры позволяют максимально использовать возможности систем MIMO-OFDM. Во всех режимах работы должна быть предусмотрена защита от влияния работы соседней станции, чтобы предотвратить искажения сигналов. На физическом уровне модели OSI для этого используются специальные поля в структуре преамбулы, которые оповещают станцию о том, что идет передача и необходимо определенное время ожидания. Некоторые методы защиты принимаются и на канальном уровне. В зависимости от используемой полосы пропускания режимы работы классифицируются следующим образом:

1. Наследуемый режим. Этот режим нужен для согласования с предыдущими версиями Wi-Fi. Он очень похож на 802.11a/g как по оборудованию, так и по полосе пропускания, которая составляет 20 МГц.

2. Двойной наследуемый режим. Устройства используют полосу 40 МГц, при этом одни и те же данные посылаются по верхнему и нижнему каналу (каждый шириной 20 МГц), но со смещением фазы на 90°. Структура пакета ориентирована на то, что приемником является обычная станция. Дублирование сигнала позволяет уменьшить искажения, повышая тем самым скорость передачи.

3. Режим с высокой пропускной способностью. Устройства поддерживают обе полосы частот — 20 и 40 МГц. В этом режиме станции обмениваются только пакетами MIMO. Скорость работы сети максимальна.

4. Режим верхнего канала. В этом режиме используется только верхняя половина диапазона 40 МГц. Станции могут обмениваться любыми пакетами.

5. Режим нижнего канала. В этом режиме используется только нижняя половина диапазона 40 МГц. Станции также могут обмениваться любыми пакетами.

Методы повышения быстродействия.

Скорость передачи данных зависит от многих факторов (таблица 1.3) и, прежде всего, от полосы пропускания. Чем она шире, тем выше скорость обмена. Второй фактор — количество параллельных потоков. В стандарте 802.11n максимальное число каналов равно 4. Также большое значение имеют тип модуляции и метод кодирования. Помехоустойчивые коды, которые обычно применяются в сетях, предполагают внесение некоторой избыточности. Если защитных битов будет слишком много, то скорость передачи полезной информации снизится. В стандарте 802.11n максимальная относительная скорость кодирования составляет до 5/6, то есть на 5 битов данных приходится один избыточный. В таблице 3 приведены скорости обмена при квадратурной модуляции QAM и BPSK. Видно, что при прочих одинаковых параметрах модуляция QAM обеспечивает гораздо большую скорость работы.

В стандарте IEEE 802.11n допускается использование до четырех антенн у точки доступа и беспроводного адаптера. Обязательный режим подразумевает поддерLCDу двух антенн у точки доступа и одной антенны и беспроводного адаптера. В стандарте IEEE 802.11n предусмотрены как стандартные каналы связи шириной 20 МГц, так и каналы с удвоенной шириной. Передаваемые данные проходят через скремблер, который вставляет в код дополнительные нули или единицы (так называемое маскирование псевдослучайным шумом), чтобы избежать длинных последовательностей одинаковых символов. Затем данные разделяются на N потоков и поступают на кодер с прямой коррекцией ошибок (FEC). Для систем с одной или двумя антеннами N = 1, а если используются три или четыре передающих канала, то N = 2.

Кодированная последовательность разделяется на отдельные пространственные потоки. Биты в каждом потоке перемеживаются (для устранения блочных ошибок), а затем модулируются. Далее происходит формирование пространственно-временных потоков, которые проходят через блок обратного быстрого преобразования Фурье и поступают на антенны. Количество пространственно-временных потоков равно количеству антенн.

Cтандарт 802.11n применяет три основных механизма для увеличения скорости передачи данных:

- применение нескольких приемопередатчиков и специальных алгоритмов передачи и приема радиосигнала, известный по аббревиатуре MIMO;

- увеличение полосы частот сигнала с 20 до 40 МГц;

- оптимизация протокола уровня доступа к сети.

Рассмотрим каждый из этих механизмов немного подробнее.

Первый фактор. С применением MIMO появляется возможность одновременно передавать несколько потоков данных в одном и том же канале, а затем при помощи сложных алгоритмов обработки восстанавливать их на приеме. Проводя аналогию с автодорогами, можно сказать, что ранее существовал только 1 путь, соединяющий точки А и Б. Теперь таких путей несколько и общая пропускная способность системы увеличилась.

Второй фактор – увеличение доступной ширины полосы частот. Теоретически достижимая пропускная способность канала связи напрямую зависит от ширины занимаемой им полосы частот. В новом стандарте появилась возможность объединять соседние каналы по 20 МГц и таким образом увеличивать пропускную способность практически в 2 раза. По аналогии с автомагистралями можно считать, что вдвое увеличивается количество доступных для движения полос.

Первые два фактора относились к физическому каналу. Третий важный фактор увеличения производительности – оптимизация протокола передачи данных на уровне доступа к среде. В предыдущих версиях прием каждого переданного кадра (порции данных) должен был подтверждаться приемной стороной. В новой версии введена возможность блокового подтверждения. Приемник информации передает одно подтверждение сразу на несколько успешно принятых кадров, что уменьшает загрузку общей пропускной способности канала служебными сообщениями. Кроме того, уменьшен временной промежуток между кадрами, что также позволило повысить полезную пропускную способность. Проводя аналогии с повседневной жизнью, можно сравнить кадры с контейнерами для перевозок грузов. Новые правила 802.11 n позволили уменьшить дистанцию между контейнерами и позволили диспетчеру подтверждать не каждый груз в отдельности, а сразу партию грузов.

 



Поделиться:


Последнее изменение этой страницы: 2016-08-01; просмотров: 264; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.136.27.210 (0.017 с.)