Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Логическая структура основной памяти

Поиск

Каждая ячейка памяти имеет свой уникальный (отличный от всех других) адрес. Основная память имеет для ОЗУ и ПЗУ единое адресное пространство.

Адресное пространство определяет максимально возможное количество непосредственно адресуемых ячеек основной памяти.

Адресное пространство зависит от разрядности адресных шин, ибо максимальное количество разных адресов определяется разнообразием двоичных чисел, которые можно отобразить в n разрядах, т.е. адресное пространство равно 2n, где п – разрядность адреса.

Для ПК характерно стандартное распределение непосредственно адресуемой памяти между ОЗУ, ПЗУ и функционально ориентированной информацией (рис. 2).

 

Стандартная память 640 Кбайт Верхняя память 384 Кбайт
64 Кбайта Область служебных программ и данных ОС 576 Кбайт Область программ и данных пользователя 256 Кбайт Область видеопамяти дисплея и служебных программ 128 Кбайт Область программ начальной загрузки ОС и др.
ОЗУ ПЗУ
       

Рис. 2. Распределение 1-Мбайтной области ОП

 

Основная память в соответствии с методами доступа и адресации делится на отдельные, иногда частично или полностью перекрывающие друг друга области, имеющие общепринятые названия. В частности, укрупненно логическая структура основной памяти ПК общей емкостью, например, 16 Мбайт представлена на рис. 3.

 

Рис. 3. Логическая структура основной памяти

 

Прежде всего основная память компьютера делится на две логические области: непосредственно адресуемую память, занимающую первые 1024 Кбайта ячеек с адресами от 0 до 1024 Кбайт, и расширенную память, доступ к ячейкам которой возможен при использовании специальных программ-драйверов.

Стандартной памятью (СМА – Conventional Memory Area) называется непосредственно адресуемая память в диапазоне от 0 до 640 Кбайт.

Непосредственно адресуемая память в диапазоне адресов от 640 до 1024 Кбайт называется верхней памятью (UMA - Upper Memory Area). Верхняя память зарезервирована для памяти дисплея (видеопамяти) и постоянного запоминающего устройства. Однако обычно в ней остаются свободные участки – "окна", которые могут быть использованы при помощи диспетчера памяти в качестве оперативной памяти общего назначения.

Расширенная память –это память с адресами 1024 Кбайта и выше.

Непосредственный доступ к этой памяти возможен только в защищенном режиме работы микропроцессора.

В реальном режиме имеются два способа доступа к этой памяти, но только при использовании драйверов:

§ по спецификации XMS (память называют тогда ХМА – e x tended Memory Area);

§ по спецификации EMS (память называют ЕМ – Expanded Memory).

Доступ к расширенной памяти согласно спецификации XMS (extended Memory Specification) организуется при использовании драйверов ХММ (extended Memory Manager). Часто эту память называют дополнительной, учитывая, что в первых моделях персональных компьютеров эта память размещалась на отдельных дополнительных платах, хотя термин Extended почти идентичен термину Expanded и более точно переводится как расширенный, увеличенный.

Спецификация EMS (Expanded Memory Specification) является более ранней. Согласно этой спецификации доступ реализуется путем отображения по мере необходимости отдельных полей Expanded Memory в определенную область верхней памяти. При этом хранится не обрабатываемая информация, а лишь адреса, обеспечивающие доступ к этой информации. Память, организуемая по спецификации EMS, носит название отображаемой, поэтому и сочетание слов Expanded Memory (EM) часто переводят как отображаемая память. Для организации отображаемой памяти необходимо воспользоваться драйвером EMM386.EXE (Expanded Memory Manager) или пакетом управления памятью QEMM.

Расширенная память может быть использована главным образом для хранения данных и некоторых программ ОС. Часто расширенную память используют для организации виртуальных (электронных) дисков.

Исключение составляет небольшая 64-Кбайтная область памяти с адресами от 1024 до 1088 Кбайт (так называемая высокая память, иногда ее называют старшая: НМА – High Memory Area), которая может адресоваться и непосредственно при использовании драйвера HIMEM.SYS (High Memory Manager) в соответствии со спецификацией XMS. НМА обычно используется для хранения программ и данных операционной системы.

ВНЕШНЯЯ ПАМЯТЬ

К внешней памяти относятся устройства, позволяющие автономно сохранять информацию для последующего её использования независимо от состояния компьютера (включен или выключен). Эти устройства могут использовать различные физические принципы хранения информации - магнитный, оптический и другие. По методу доступа к информации устройства различают на устройства с прямым доступам и последовательным доступам. Характерной особенностью внешней памяти является то, что её устройства оперируют блоками информации, а не байтами или словами, как это позволяет оперативная память. Прямой доступ подразумевает возможность обращения к блокам по их адресам в произвольном порядке.

Устройства внешней памяти могут иметь сменные или фиксированные носители информации. Применение сменных носителей позволяет хранить неограниченный объем информации. Существуют устройства с автоматической сменой носителя, но это довольно дорогие устройства. Применяются, как правило, в мощных файл-серверах. Для настольных машин используются накопители CD-ROM, DVD.

Важнейшими общими параметрами устройств является время доступа, скорость передачи данных и удельная стоимость хранения информации. Время доступа (Access Time)определяется как усредненный интервал от выдачи запроса на передачу блока данных до фактического начала передачи. Для устройств с подвижными носителями основной расход тратиться на позиционирование головок (Seek Time) и ожидания подхода к ним требуемого участка носителя (Latency - скрытый период). Дисковые устройства имеют время доступа от единиц до сотен миллисекунд. Для электронных устройств внешней памяти время доступа определяется быстродействием используемых микросхем памяти и при чтении составляет доли микросекунд (хотя записи может быть больше).

Скорость передачи данных (Transfer Speed)определяется как производительность обмена данными, измеряемая после выполнения поиска данных. Однако в данном способе измерения этого параметра могут быть разногласия. Это связанно с том, что некоторые устройства имею в своем составе буферную память существенных размеров. Скорость обмена буферной памяти с собственно носителем (внутренняя скорость) и с внешнем интерфейсом могут существенно различаться. В отличие от внешнего интерфейса, где скорость ограничивается быстродействием электронной части, внутренняя скорость более жестко ограничивается возможностями электромеханической части (скоростью движения носителя и плотностью записи). О внутренней скорости носителя судят по частоте вращения дисковых носителей и числу секторов на треке.

FDD - 100 mc 0.055 Мб/с

HDD IDE - 7.5-40 mc 0,2-2,5 МБ/с

HDD SCSI (объем в два раза больше) - 7,5-40 0,2-2Мб/с

CD-ROM - 120 3Мб/с

Дисковые накопители

Жесткий диск - основное устройство для долговременного хранения больших объемов данных и программ. На самом деле это не один диск, а группа соосных дисков, имеющих магнитное покрытие и вращающихся с высокой скоростью. Таким образом, этот "диск" имеет не две поверхности, как должно быть у обычного плоского диска, а 2n поверхностей. Термин винчестер возник из жаргонного названия первой модели жесткого диска емкостью 16 Кбайт (IBM, 1973 г.), имевшего 30 дорожек по 30 секторов, что случайно совпало с калибром "30/30" известного охотничьего ружья "Винчестер".

Управление работой жесткого диска выполняет специальное аппаратно-логическое устройство - контроллер жесткого диска. В прошлом оно представляло собой отдельную дочернюю плату, в настоящее время функции контроллеров дисков частично интегрированы в сам жесткий диск, а частично выполняются микросхемами, входящими в микропроцессорный комплект (чипсет), хотя некоторые виды высокопроизводительных контроллеров жестких дисков по-прежнему могут поставляться на отдельной плате.

Несмотря на большое разнообразие физических носителей памяти, и принципов записи и считывания информации, дисковые устройства имеют свой основной механизм. Слой носителя информации – магнитный, оптический или какой - другой нанесен на рабочие поверхности дисков. Диски вращаются с помощью шпинделя (Spindel Motor), который обеспечивает требуемую частоту вращения в рабочем режиме. На диске имеет индексный маркер, который проходя мимо специального датчика, отмечает начало каждого оборота диска. Информация на диске расположена на специальных концентрационных треках (дорожках), нумерация которых начинается с внешнего трека (00). Каждый трек разбит на секторы фиксированного размера. Сектор является минимальным блоком информации, который может быть записан на диск или считан с него. Нумерация секторов начинается с единицы и привязывается к индексу маркеру. Каждый сектор имеет служебную область, содержащую адресную информацию, контрольные коды, некоторую другую информацию и непосредственно сами данные. На шпинделе может быть размещено несколько дисков и у каждого диска может использоваться две рабочие поверхности. В этом случае вся совокупность треков с одинаковыми номерами будет составлять цилиндр. Для каждой рабочей поверхности в накопителе имеет своя головка для чтения-записи. Головки номеруются с нуля. Для того, чтобы провести операцию чтению или записи сектора шпиндель должен вращаться с заданной скоростью, блок головок должен быть подведен к заданному цилиндру, и только тогда требуемый сектор подойдет к выбранной головке, после чего начинается физическая операция обмена данными между головкой и блоком электроники накопителя. Для записи или считывания информации используются различные методы частотной или фазовой модуляции, позволяющие кодировать или декодировать информацию. Контроллер накопителя выполняет разборку блоков информации (секторов или целых треков), включая формирование и проверку контрольных кодов, осуществляет модуляцию и демодуляцию сигналов головок и управляет всеми механизмами накопителя.

Данные на дисках хранятся в файлах, которые обычно отождествляют с участком (областью, полем) памяти на этих носителях информации.

Поле памяти создаваемому файлу выделяется кратным определенному количеству кластеров. Кластеры, выделяемые одному файлу, могут находиться в любом свободном месте дисковой памяти и необязательно являются смежными. Файлы, хранящиеся в разбросанных по диску кластерах, называются фрагментированными.

Дефрагмента́ция — процесс обновления и оптимизации логической структуры раздела диска с целью обеспечить хранение файлов в непрерывной последовательности кластеров. После дефрагментации ускоряется чтение и запись файлов, а следовательно и работа программ, ввиду того, что последовательные операции чтения и записи выполняются быстрее случайных обращений (например, для жесткого диска при этом не требуется перемещение головки). Другое определение дефрагментации: перераспределение файлов на диске, при котором они располагаются в непрерывных областях.

Длинные файлы занимают несколько кластеров. Если запись производится на незаполненный диск, то кластеры, принадлежащие одному файлу, записываются подряд. Если диск переполнен, на нём может не быть цельной области, достаточной для размещения файла. Тем не менее, файл все-таки запишется, если на диске много мелких областей, суммарный размер которых достаточен для записи. В этом случае файл записывается в виде нескольких фрагментов.

Процесс разбиения файла на небольшие фрагменты при записи на диск называется фрагментацией. Если на диске много фрагментированных файлов, скорость чтения носителя уменьшается, поскольку поиск кластеров, в которых хранятся файлы, на жёстких дисках требует времени. На флеш-памяти, например, время поиска не зависит от расположения секторов, и практически равно нулю, поэтому для них дефрагментация не требуется.

Помимо замедления компьютера в работе с файловыми операциями (таких как чтение и запись), фрагментация файлов негативно сказывается на «здоровье» жёсткого диска, так как заставляет постоянно перемещаться позиционирующие головки диска, которые осуществляют чтение и запись данных. Для устранения проблемы фрагментации существуют программы-дефрагментаторы, принцип работы которых заключается в «сборке» каждого файла из его фрагментов. Общим недостатком таких программ является их медленная работа — процесс дефрагментации обычно занимает очень много времени (до нескольких часов).

Максимальная емкость и скорость передачи данных существенно зависят от интерфейса, используемого накопителем.

Распространенный сейчас интерфейс AT Attachment (ATA), широко известный и под именем Integrated Device Electronics (IDE), предложенный в 1988 г. пользователям ПК IBM PC/AT, ограничивает емкость одного накопителя 504 Мбайтами (эта емкость ограничена адресным пространством традиционной адресации "головка – цилиндр – сектор": 16 головок * 1024 цилиндра * 63 сектора * 512 байт в секторе = 504 Кбайта = 528 482 304 байта) и обеспечивает скорость передачи данных 5-10 Мбайт/с.

Интерфейс Fast АТА - 2 или Enhanced IDE (EIDE), использующий как традиционную (но расширенную) адресацию по номерам головки, цилиндра и сектора, так и адресацию логических блоков (Logic Block Address LBA), поддерживает емкость диска до 2500 Мбайт и скорость обмена до 16 Мбайт/с. С помощью EIDE к материнской плате может подключаться до четырех накопителей, в том числе и CD-ROM, и НКМЛ. Для старых версий BIOS для поддержки EIDE нужен специальный драйвер.

Наряду с АТА и АТА-2 широко используются и две версии более сложных дисковых интерфейсов Small Computer System Interface (интерфейс малых компьютерных систем): SCSI и SCSI-2. Их достоинства: высокая скорость передачи данных (интерфейс Fast Wide SCSI-2 и интерфейс SCSI-3 поддерживают скорость до 40 Мбайт/с), большое количество (до 7 шт.) и максимальная емкость подключаемых накопителей. Их недостатки: высокая стоимость (примерно в 5 -10 раз дороже АТА), сложность установки и настройки. Интерфейсы SCSI-2 и SCSI-3 рассчитаны на использование в мощных машинах-серверах и рабочих станциях.

Для повышения скорости обмена данными процессора с дисками НЖМД следует кэшировать. КЭШ-память для дисков имеет то же функциональное назначение, что и КЭШ для основной памяти, т.е. служит быстродействующим буфером памяти для кратковременного хранения информации, считываемой или записываемой на диск. КЭШ-память может быть встроенной в дисковод, а может создаваться программным путем (например, драйвером Microsoft Smartdrive) в оперативной памяти. Скорость обмена данными процессора с КЭШ-памятью диска может достигать 100 Мбайт/с.

В ПК имеется обычно один, реже несколько накопителей на жестких магнитных дисках. Однако программными средствами один физический диск может быть разделен на несколько "логических" дисков; тем самым имитируется несколько НМД на одном накопителе.



Поделиться:


Последнее изменение этой страницы: 2016-08-01; просмотров: 382; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.217.150.88 (0.008 с.)