Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Определение плотности тока и напряженности магнитного поля внутри проводникаСодержание книги
Поиск на нашем сайте
Для цилиндрического проводника плотность тока определяется по формуле: , где . Напряжённость магнитного поля равна: . Бесселевы функции J0(qr) и J1(qr) от комплексного аргумента тоже являются комплексами и могут быть представлены в показательной форме: , где b0-модуль, а β0—аргумент функции J0(qr); b1-модуль, а β1—аргумент функции J1(qr). Таблица 2.1. Модули и аргументы функций J0(qr) и J1(qr)
Аргументами β0 и β1 пренебрегаем и не используем в вычислениях, т.к. графики строятся по значению модуля функции Бесселя. Т.е. запишем это в виде:
Рис. 2.1. Функции Бесселя нулевого и первого порядка
рад/с; mа=m×m0= 90 ×4p×10-7 = 1130,4 ×10-6 Гн/м; - на поверхности проводника.
При r = 0 (В центре проводника). ; ; = =207996,83 А/м2 =0 А/м При r = 0,2R = 0,48 мм.
= =228796,5 А/м2 = =40,18 А/м Выполним аналогичные расчеты для точек, находящихся на расстоянии от оси провода r = 0,3 R; r = 0,5 R; r = 0,7 R; r = 0,9 R; r = 1.0 R и запишем результаты в таблицу: Таблица 2.2. Результаты расчетов при f = 300 Гц
Определим плотность тока и напряженность магнитного поля внутри проводника при f1=nf=14∙300=4200 Гц. рад/с; mа=m×m0= 90 ×4p×10-7 = 1130,4 ×10-6 Гн/м; - на поверхности проводника. Выполним аналогичные расчеты для точек, находящихся на расстоянии от оси провода r=0,3; R r=0,5R; r=0,7R; r=0,9R;r=R и запишем результаты в таблицу: Таблица 2.3. Результаты расчетов при f =4200 Гц
Построение графиков зависимости модуля плотности тока и напряженности магнитного поля от расстояния от центра провода
Рис.2.2.График зависимости модуля плотности тока от r
Рис.2.3.График зависимости напряженности магнитного поля от r Распределения напряженности магнитного поля снаружи проводника. Напряжённость магнитного поля снаружи проводника равна: . Осуществим расчеты в точках, находящихся на расстоянии от оси проводника соответственно r = 1R; r = 1,2 R; r = 1,5 R; r = 2R; r = 5 R; r = 10 R; r = 15 R; r = 25 R; r = 50 R. =209,52 А/м при r = 1R; =174,6 А/м при r = 1,2 R; =138,225 А/м при r = 1,5 R; =104,76 А/м при r = 2R; =41,9 А/м при r = 5 R; =20,95 А/м при r = 10 R =13,96 А/м при r = 15 R =8,38 А/м при r = 25 R =4,19 А/м при r = 50 R
Рис. 2.4. Напряженность магнитного поля снаружи проводника Определение величины потока вектора Пойнтинга (на единицу длины) внутри проводника с электрическим током Поток вектора Пойнтинга равен =0,1207 ВА/м2. Рис.2.5. Направление вектора Пойнтинга
Распределение энергии магнитного поля снаружи проводника Для определения энергии магнитного поля снаружи проводника будем использовать формулу: где Откуда Осуществим расчеты в точках, находящихся на расстоянии от оси проводника соответственно r = 1R; r = 1,2 R; r = 1,5 R; r = 2R; r = 5 R; r = 10 R; r = 15 R; r = 25 R; r = 50 R и построим по ним соответствующий график. 77,8 Вт/м2 при r = 1R =54,09 Вт/м2 при r = 1,2 R =34,61 Вт/м2 при r = 1,5 R 19,4 Вт/м2 при r = 2R 3,11Вт/м2 при r = 5 R 0,77 Вт/м2 при r = 10 R 0,346 Вт/м2 при r = 15 R 0,12 Вт/м2 при r = 25 R 0,0311 Вт/м2 при r = 50 R
Рис. 2.6. Распределение энергии магнитного поля снаружи проводника
Выводы: 1. Плотность тока и напряженность внутри проводника возрастают по мере увеличения r. Чем больше частота, тем медленнее возрастают плотность тока и напряженность. 2. Напряженность магнитного поля снаружи проводника убывает с увеличением расстояния от оси проводника. 3. Вектор Пойтинга направлен к центру проводника и равен 0,1207 ВА/м2. 4. Энергия магнитного поля снаружи проводника убывает с увеличением r. Расчет параметров металлического магнитного экрана 1. Рассчитать оптимальные линейные размеры и вес магнитного экрана цилиндрической формы (рис.3.1), расположенного в однородном магнитном поле напряженности 42,5 А/м2, который должен обеспечивать заданный коэффициент экранирования (материал – сталь ШХ-15). Определить величину напряженности магнитного поля во внутренней области магнитного экрана. Величину относительной магнитной проницаемости брать в соответствии с напряженностью магнитного поля Но. 2. Исследовать зависимость коэффициента экранирования магнитного экрана от напряженности внешнего магнитного поля, который изменяется в указанном диапазоне напряженности магнитного поля Но (приложение Б). 3. Рассчитать параметры магнитного экрана, имеющего минимальные габаритные размеры и вес.
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-08-01; просмотров: 235; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.137.159.17 (0.005 с.) |