Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Сравнение возможностей протоколов транспортного уровня↑ ⇐ ПредыдущаяСтр 11 из 11 Содержание книги
Поиск на нашем сайте
UDP (англ. User Datagram Protocol — протокол пользовательских датаграмм) — это транспортный протокол для передачи данных в сетях IP без установления соединения. Он является одним из самых простых протоколов транспортного уровня модели OSI. Его IP-идентификатор — 1116 (17).
Состав UDP-датаграммы Первые 64 бита (8 байт) датаграммы представляют собой UDP-заголовок, остальные биты — данные сообщения:
Значение поля «длина датаграммы» указывает на длину всего UDP-сообщения, то есть включая и UDP-заголовок. Измеряется в октетах (байтах). Максимальная длина данных Для вычисления максимальной длины данных в UDP-сообщении при передаче в IP сетях необходимо учесть, что UDP-сообщение в свою очередь является содержимым области данных IP-сообщения. Максимальная длина IP-сообщения (с учетом заголовка) равна 65535 октетов. Потому максимальная длина UDP-сообщения (за вычетом минимального IP-заголовка) равна 65535 − 20 = 65515 октетов. Расчёт контрольной суммы Перед расчетом контрольной суммы UDP-сообщение дополняется в конце нулевыми битами до длины, кратной 16 битам (псевдозаголовок и добавочные нулевые биты не отправляются вместе с сообщением). Поле контрольной суммы в UDP-заголовке во время расчета контрольной суммы отправляемого сообщения принимается нулевым. Для расчета контрольной суммы псевдозаголовок и UDP-сообщение разбивается на слова (1 слово = 2 байта (октета) = 16 бит). Затем рассчитывается поразрядное дополнение до единицы суммы всех слов с поразрядным дополнением. Результат записывается в соответствующее поле в UDP-заголовке. Нулевое значение контрольной суммы зарезервировано, и означает что датаграмма не имеет контрольной суммы. В случае, если вычисленная контрольная сумма получилась равной нулю, поле заполняют двоичнымим единицами. При получении сообщения получатель считает контрольную сумму заново (уже учитывая поле контрольной суммы), и, если в результате получится двоичное число из шестнадцати единиц (то есть 0xffff), то контрольная сумма считается сошедшейся. Если сумма не сходится (данные были повреждена при передаче), датаграмма уничтожается. Если приложению требуется большая надёжность, то используется протокол TCP или SCTP. UDP используется в следующих протоколах:
Протокол DCCP (Datagram Congestion Control Protocol; RFC-4336, -4340) является транспортным протоколом, который использует двунаправленные уникастные соединения с управлением перегрузкой для ненадежной доставки дейтограмм. Протокол DCCP предназначен для приложений, которые реализуют поточную схему TCP, но имеют приоритет для своевременной доставки данных с сохранением порядка кадров или требуют надежности, или которым нужен механизм подавления перегрузки, отличный от TCP. До настоящего времени такие приложения использовали либо TCP, чья надежность и гарантия упорядочения доставки давалась за счет неопределенно большой задержки, или UDP и независимого механизма управления перегрузкой (или вообще с отсутствием подавления перегрузки). Протокол DCCP будет предоставлять стандартный способ управления перегрузкой и позволит использовать механизм ECN (Explicit Congestion Notification). Протокол DCCP предназначен для приложений, которые не требуют параметров SCTP [Stream Control Transmission Protocol, RFC 2960], таких как упорядоченная доставка при нескольких потоках. Одной из целей DCCP было максимальное облегчение для UDP приложений перехода на DCCP, когда он будет внедрен. Чтобы облегчить это, DCCP был спроектирован с минимальной избыточностью, как с точки зрения размера заголовка пакета, так и с позиции загрузки ЦПУ машин партнеров. В DCCP была включена минимальная функциональность, при сохранении возможности включения новых функций, таких как FEC (Forward Error Correction), псевдонадежность и множественные потоки, которые могут быть добавлены поверх DCCP, если потребуется. Протокол DCCP имеет следующие характеристики:
Классы IP-адресов. Классовая адресация сетей — метод IP-адресации. Использование этого метода не позволяет экономно использовать ограниченный ресурс IP-адресов, поскольку невозможно применение различных масок подсетей к различным подсетям. [править]Основные понятия Изначально адресация в сетях IP осуществлялась на основе классов: первые биты определяли класс сети, а по классу сети можно было сказать - сколько бит было отведено под номер сети и номер узла. Всего существовало 5 классов:
Особенностью IP является гибкая система адресации. Плата за это - наличие централизованных служб типа DNS. Адрес состоит из двух частей – номер сети и номер узла в сети. IP-адрес версии 4 имеет длину 4 байта, записывается в виде четырех десятичных чисел, разделенных точками. Для определения, какие байты принадлежат номеру сети, а какие номеру узла существует несколько подходов. Одним из подходов был классовый метод адресации. Таблица 5. Классы IP-адресов
Таблица6. Нумерация IP-сетей.
Нетрудно посчитать, что всего в пространстве адресов IP - 128 сетей по 16 777 216 адресов класса A, 16384 сети по 65536 адресов класса B и 2 097 152 сети по 256 адресов класса C, а также 268 435 456 адресов многоадресной рассылки и 134 317 728 зарезервированных адресов. С ростом сети Интернет эта система оказалась неэффективной и была дополнена CIDR (бесклассовой адресацией). Метод CIDR Бесклассовая адресация (англ. Classless Inter-Domain Routing, англ. CIDR) — метод IP-адресации, позволяющий гибко управлять пространством IP-адресов, не используя жёсткие рамки классовой адресации. Использование этого метода позволяет экономно использовать ограниченный ресурс IP-адресов, поскольку возможно применение различных масок подсетей к различным подсетям. Диапазоны адресов IP-адрес является массивом битов. Принцип IP-адресации — выделение множества (диапазона, блока, подсети) IP-адресов, в котором некоторые битовые разряды имеют фиксированные значения, а остальные разряды пробегают все возможные значения. Блок адресов задаётся указанием начального адреса и маски подсети. Бесклассовая адресация основывается на переменной длине маски подсети (англ. variable length subnet mask, VLSM), в то время, как в классовой (традиционной) адресации длина маски строго фиксирована 0, 1, 2 или 3 установленными октетами. Вот пример записи IP-адреса в бесклассовой нотации: 192.0.2.32/27.
В данном примере видно, что в маске подсети 27 бит слева выставлены в единицу (значащие биты). В таком случае говорят о длине префикса подсети в 27 бит и указывают через косую черту (знак /) после базового адреса. Вот ещё один пример записи адреса с применением бесклассовой адресации: 172.16.0.1/12.
Множество всех адресов соответствует нулевой маске подсети и обозначается /0, а конкретный адрес IPv4 — маске подсети с длиной префикса в 32 бита, обозначаемой /32. Для упрощения таблиц маршрутизации можно объединять блоки адресов, указывая один большой блок вместо ряда мелких. Например, 4 смежные сети класса C (4 × 255 адресов, маска 255.255.255.0 или /24) могут быть объединены, с точки зрения далёких от них маршрутизаторов, в одну сеть /22. И напротив, сети можно разбивать на более мелкие подсети, и так далее. В Интернете используются[ прояснить ] только маски следующего вида: n единиц, дальше все нули. Для таких (и только для таких) масок получающиеся множества IP-адресов будут смежными. Математическое обоснование С точки зрения бесклассовой двоичной адресации пространство IP-адресов рассматривается как ультраметрическое. Разные блоки адресов являются в нём шара́ми, радиус которых убывает с увеличением n, и сами они формируют направленное двоичное дерево. То есть, от каждого блока (/n, для IPv4) можно «перейти» на один из двух блоков меньшего размера (/ n +1), из которых он состоит. Возможные маски
Количество адресов подсети не равно количеству возможных узлов. Нулевой адрес IP резервируется для идентификации подсети, последний — в качестве широковещательного адреса, таким образом в реально действующих сетях возможно количество узлов на два меньшее количества адресов. Адреса пакетов IPv6 Адресное пространство IPv6 будет распределяться IANA (Internet Assigned Numbers Authority - комиссия по стандартным числам в Интернет [RFC-1881]). В качестве советников будут выступать IAB (Internet Architecture Board - совет по архитектуре Интернет) и IESG (Internet Engineering Steering Group - инженерная группа управления Интернет). IANA будет делегировать права выдачи IP-адресов региональным сервис-провайдерам, субрегиональным структурам и организациям. Отдельные лица и организации могут получить адреса непосредственно от регионального распределителя или сервис провайдера. Передача адресного пространства от IANA не является необратимым. Если, по мнению IANA, распорядитель адресного пространства допустил серьезные ошибки, IANA может аннулировать выполненное ранее выделение. IANA в этом случае должна сделать все возможное, чтобы не отзывать адреса, находящиеся в активном использовании, за исключением случаев, когда это диктуется техническими соображениями. IPv6 представляет собой новую версию протокола Интернет (RFC-1883), являющуюся преемницей версии 4 (IPv4; RFC-791). Изменения IPv6 по отношению к IPv4 можно поделить на следующие группы:
Формат и семантика адресов IPv6 описаны в документе RFC-1884. Версия ICMP IPv6 рассмотрена в RFC-1885 и RFC-4861 (обновленная версия). Протокол ICMPv6 выполняет также функцию получения данных о соседях (аналог протокола ARP). Для этой цели используется посылка мультикастинг-сообщений. 2. Формат заголовка IPv6
Cообщения об ошибках ICMP6 Формат пакета ICMP
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-07-16; просмотров: 473; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 13.58.203.104 (0.007 с.) |