Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Методы доступа к среде передаче данныхСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Доступом к сети называют взаимодействие станции (узла сети) со средой передачи данных для обмена информацией с другими станциями. Управление доступом к среде - это установление последовательности, в которой станции получают доступ к среде передачи данных. Различают следующие методы доступа:
Случайные методы доступа делятся на:
а) чистая ALOHA; б) слотированная ALOHA;
а) с обнаружением коллизий CSMA/CD; б) с предотвращением коллизий CSMA/CA. Детерминированные методы доступа делятся на:
Множественный доступ с контролем несущей и обнаружением коллизий (CSMA/CD)
CSMA/CD является широковещательным (broadcasting) методом. Все станции при применении CSMA/CD равноправны по доступу к сети. Если линия передачи данных свободна, то в ней отсутствуют электрические колебания, что легко распознается любой станцией, желающей начать передачу. Такая станция захватывает линию. Любая другая станция, желающая начать передачу в некоторый момент времени t, если обнаруживает электрические колебания в линии, то откладывает передачу до момента t + td, где td - задержка. Различают настойчивый и ненастойчивый CSMA/CD в зависимости от того, как определяется td. В первом случае попытка захвата канала происходит сразу после его освобождения, что допустимо при слабой загрузке сети. При заметной загрузке велика вероятность того, что несколько станций будут претендовать на доступ к сети сразу после ее освобождения, и, следовательно, конфликты станут частыми. В ненастойчивом CSMA/CD задержка td является случайной величиной. При работе сети каждая станция анализирует адресную часть передаваемых по сети кадров с целью обнаружения и приема кадров, предназначенных для нее. Рис.7. Метод случайного доступа CSMA/CD
Рис.8. Алгоритмы доступа по методу CSMA/CD
Конфликтом называется ситуация, при которой две или более станции "одновременно" пытаются захватить линию. Понятие "одновременность событий" в связи с конечностью скорости распространения сигналов по линии конкретизируется как отстояние событий во времени не более чем на величину 2*d, называемую окном столкновений, где d - время прохождения сигналов по линии между конфликтующими станциями. Если какие-либо станции начали передачу в окне столкновений, то по сети распространяются искаженные данные. Это искажение и используется для обнаружения конфликта либо сравнением в передатчике данных, передаваемых в линию (неискаженных) и получаемых из нее (искаженных), либо по появлению постоянной составляющей напряжения в линии, что обусловлено искажением используемого для представления данных манчестерского кода. Обнаружив конфликт, станция должна оповестить об этом партнера по конфликту, послав дополнительный сигнал затора, после чего станции должны отложить попытки выхода в линию на время td. Очевидно, что значения td должны быть различными для станций, участвующих в столкновении (конфликте); поэтому td- случайная величина. Ее математическое ожидание должно иметь тенденцию к росту по мере увеличения числа идущих подряд неудачных попыток захвата линии.
К достоинству этого метода относится достаточная простота реализации. К серьёзному недостатку – значительное падение производительности при увеличении объёма передаваемых данных до критического значения.
Увеличение числа компьютеров в сети приводит к росту их запросов на передачу данных. При этом вероятность возникновения коллизий значительно возрастает. После каждой коллизии компьютерам приходится возобновлять передачу. Если сеть сильно загружена, повторные попытки могут привести к коллизиям с другими компьютерами, затем с новыми и т.д. Такое лавинообразное нарастание повторных передач может значительно снизить производительность сети, а иногда и полностью её заблокировать. Синтез структуры сети
В звездообразных сетях существует единственная коммутационная станция (КС), к которой подключены все АС с помощью индивидуальной среды передачи данных. В каждый момент времени КС обслуживает только один запрос одной АС. Поэтому быстродействие таких ЛВС определяется, в первую очередь, пропускной способностью КС и пунктом ее размещения. Решение этой задачи можно свести а задаче поиска медианы полного взвешенного графа G, с матрицей весов ||Cij||, где (i,j ÎМ0), где каждой вершине приписывается вес wi ³ L для всех j ÎМ0. Медианой, графа G называется вершина, для которой сумма кратчайших расстояний от нее до остальных вершин графа является минимальной. Для каждой вершина определим два числа, которые называется передаточными числами: и где - кратчайшее расстояние от вершины xi до вершины xj, в данном случае = Cij. Числа n1(xi) и n2(xi) соответственно называются внешними и внутренними передаточными числами вершины Xi. Вершина, для которой (1) называется внешней медианой графа G, вершина для которой (2) - внутренней медианой его. Если граф G1 имеет симметричную матрицу весов, т.е. по одним и тем же каналам связи осуществляется как передача, так и прием данных (например, как в ЛВС), то. Таким образом, в качестве пункта размещения КС можно взять вершину, которая является внешневнутренней медианой графа. Выбор варианта построения КС будем производить таким образом, чтобы затраты на ее создание были минимальными и выполнялось условие (3) где - пропускная способность z -го варианта КС, расположенного в j-м пункте.
Шаг 1. Упорядочить затраты на создание вариантов построения КС по возрастанию: C1 <C2<…<Cz<…<Cn. Шаг 2. Посмотреть варианты построения КС в порядке возрастания затрат на их создание до тех пор, пока не будет выполняться условие (3). Шаг 3. Если условие (3) выполняется, то за j-й КС закрепляется z-е ТС с производительностью Wj(z). Если условие (3) не выполняется, j=j+1 и перейти к шагу1. Шаг 4. Если j<m, то перейти к шагу 5. Иначе j=j+1 и перейти к шагу 1. Шаг 5. Вычислить внешние (или внутренние) передаточные числа n1(xi) или n2(xi). Шаг 6. Определить внешневнутреннюю медиану графа с помощью выражений (1) и (2). Конец алгоритма. Протоколы и стандарты Протоколы - это набор семантических и синтактических правил, которые определяют поведение функциональных блоков сети при передаче данных. С протоколами связаны спецификаций описывает как построена сеть.Какой детализирует порядок. Определяет размеры пакетов информаций и.т.д. Стандарты – это протоколы, которые получили широкую известность в процессе эксплуатаций. Стандарты 802.Х В 1980 году в институте IEEE был организован комитет 802 по стандартизации локальных сетей, в результате работы которого было принято семейство стандартов IEEE 802-х, которые содержат рекомендации по проектированию нижних уровней локальных сетей. Позже результаты работы этого комитета легли в основу комплекса международных стандартов ISO 8802-1...5. Эти стандарты были созданы на основе очень распространенных фирменных стандартов сетей Ethernet, ArcNet и Token Ring. Помимо IEEE в работе по стандартизации протоколов локальных сетей принимали участие и другие организации. Так, для сетей, работающих на оптоволокне, американским институтом по стандартизации ANSI был разработан стандарт FDDI, обеспечивающий скорость передачи данных 100 Мб/с. Работы по стандартизации протоколов ведутся также ассоциацией ЕСМА, которой приняты стандарты ЕСМА-80, 81, 82 для локальной сети типа Ethernet и впоследствии стандарты ЕСМА-89,90 по методу передачи маркера. Стандарты семейства IEEE 802.X охватывают только два нижних уровня семи-уровневой модели OSI - физический и канальный. Это связано с тем, что именно эти уровни в наибольшей степени отражают специфику локальных сетей. Старшие же уровни, начиная с сетевого, в значительной степени имеют общие черты как для локальных, так и для глобальных сетей. Специфика локальных сетей также нашла свое отражение в разделении канального уровня на два подуровня, которые часто называют также уровнями. Канальный уровень (Data Link Layer) делится в локальных сетях на два подуровня: логической передачи данных (Logical Link Control, LLC); управления доступом к среде (Media Access Control, MAC). Уровень MAC появился из-за существования в локальных сетях разделяемой среды передачи данных. Именно этот уровень обеспечивает корректное совместное использование общей среды, предоставляя ее в соответствии с определенным алгоритмом в распоряжение той или иной станции сети. После того как доступ к среде получен, ею может пользоваться более высокий уровень - уровень LLC, организующий передачу логических единиц данных, кадров информации, с различным уровнем качества транспортных услуг. В современных локальных сетях получили распространение несколько протоколов уровня MAC, реализующих различные алгоритмы доступа к разделяемой среде. Эти протоколы полностью определяют специфику таких технологий, как Ethernet, Fast Ethernet, Gigabit Ethernet, Token Ring, FDDI, l00VG-AnyLAN. Уровень LLC отвечает за передачу кадров данных между узлами с различной степенью надежности, а также реализует функции интерфейса с прилегающим к нему сетевым уровнем. Именно через уровень LLC сетевой протокол запрашивает у канального уровня нужную ему транспортную операцию с нужным качеством. На уровне LLC существует несколько режимов работы, отличающихся наличием или отсутствием на этом уровне процедур восстановления кадров в случае их потери или искажения, то есть отличающихся качеством транспортных услуг этого уровня. Протоколы уровней MAC и LLC взаимно независимы - каждый протокол уровня MAC может применяться с любым протоколом уровня LLC, и наоборот. Стандарты IEEE 802 имеют достаточно четкую структуру, приведенную на рис.: Рис. 9. Структура стандартов IEEE 802.X Эта структура появилась в результате большой работы, проведенной комитетом 802 по выделению в разных фирменных технологиях общих подходов и общих функций, а также согласованию стилей их описания. В результате канальный уровень был разделен на два упомянутых подуровня. Описание каждой технологии разделено на две части: описание уровня MAC и описание физического уровня. Как видно из рисунка, практически у каждой технологии единственному протоколу уровня MAC соответствует несколько вариантов протоколов физического уровня (на рисунке в целях экономии места приведены только технологии Ethernet и Token Ring, но все сказанное справедливо также и для остальных технологий, таких как ArcNet, FDDI, l00VG-AnyLAN). Над канальным уровнем всех технологий изображен общий для них протокол LLC, поддерживающий несколько режимов работы, но независимый от выбора конкретной технологии. Стандарт LLC курирует подкомитет 802.2. Даже технологии, стандартизованные не в рамках комитета 802, ориентируются на использование протокола LLC, определенного стандартом 802.2, например протокол FDDI, стандартизованный ANSI. Особняком стоят стандарты, разрабатываемые подкомитетом 802.1. Эти стандарты носят общий для всех технологий характер. В подкомитете 802.1 были разработаны общие определения локальных сетей и их свойств, определена связь трех уровней модели IEEE 802 с моделью OSI. Но наиболее практически важными являются стандарты 802.1, которые описывают взаимодействие между собой различных технологий, а также стандарты по построению более сложных сетей на основе базовых топологий. Эта группа стандартов носит общее название стандартов межсетевого взаимодействия (internetworking). Сюда входят такие важные стандарты, как стандарт 802. ID, описывающий логику работы моста/коммутатора, стандарт 802.1Н, определяющий работу транслирующего моста, который может без маршрутизатора объединять сети Ethernet и FDDI, Ethernet и Token Ring и т. п. Сегодня набор стандартов, разработанных подкомитетом 802.1, продолжает расти. Например, недавно он пополнился важным стандартом 802.1Q, определяющим способ построения виртуальных локальных сетей VLAN в сетях на основе коммутаторов. Стандарты 802.3,802.4,802.5 и 802.12 описывают технологии локальных сетей, которые появились в результате улучшений фирменных технологий, легших в их основу. Так, основу стандарта 802.3 составила технология Ethernet, разработанная компаниями Digital, Intel и Xerox (или Ethernet DIX), стандарт 802.4 появился | как обобщение технологии ArcNet компании Datapoint Corporation, а стандарт 802.5 в основном соответствует технологии Token Ring компании IBM. Исходные фирменные технологии и их модифицированные варианты - стандарты 802.х в ряде случаев долгие годы существовали параллельно. Например, технология ArcNet так до конца не была приведена в соответствие со стандартом 802.4 (теперь это делать поздно, так как где-то примерно с 1993 года производство оборудования ArcNet было свернуто). Расхождения между технологией Token Ring и стандартом 802.5 тоже периодически возникают, так как компания IBM регулярно вносит усовершенствования в свою технологию и комитет 802.5 отражает эти усовершенствования в стандарте с некоторым запозданием. Исключение составляет технология Ethernet. Последний фирменный стандарт Ethernet DIX был принят в 1980 году, и с тех пор никто больше не предпринимал попыток фирменного развития Ethernet. Все новшества в семействе технологий Ethernet вносятся только в результате принятия открытых стандартов комитетом 802.3. Более поздние стандарты изначально разрабатывались не одной компанией, а группой заинтересованных компаний, а потом передавались в соответствующий подкомитет IEEE 802 для утверждения. Так произошло с технологиями Fast Ethernet, l00VG-AnyLAN, Gigabit Ethernet. Группа заинтересованных компаний образовывала сначала небольшое объединение, а затем по мере развития работ к нему присоединялись другие компании, так что процесс принятия стандарта носил открытый характер. Сегодня комитет 802 включает следующий ряд подкомитетов, в который входят как уже упомянутые, так и некоторые другие: 802.1 - Internetworking - объединение сетей; 802.2 - Logical Link Control, LLC - управление логической передачей данных; 802.3 - Ethernet с методом доступа CSMA/CD; 802.4 - Token Bus LAN - локальные сети с методом доступа Token Bus; 802.5 - Token Ring LAN - локальные сети с методом доступа Token Ring; 802.6 - Metropolitan Area Network, MAN - сети мегаполисов; 802.7 - Broadband Technical Advisory Group - техническая консультационная группа по широкополосной передаче; 802,8 - Fiber Optic Technical Advisory Group - техническая консультационная группа по волоконно-оптическим сетям; 802.9 - Integrated Voice and data Networks - интегрированные сети передачи голоса и данных; 802.10 - Network Security - сетевая безопасность; 802.11 - Wireless Networks - беспроводные сети; 802.12 - Demand Priority Access LAN, l00VG-AnyLAN - локальные сети с методом доступа по требованию с приоритетами.
|
||||
Последнее изменение этой страницы: 2016-07-16; просмотров: 826; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.219.207.11 (0.01 с.) |