Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Геохимия постмагматического процесса.Содержание книги
Поиск на нашем сайте
Постмагматический (послемагматический) процесс – образование этапов и геофаз, следующих после кристаллизации самого расплава и часто от него пространственно и хронологически обособленные (поствулканический). Перенос химических элементов и их отложение в виде минералов может идти по двум направлениям: отложения минералов при кристаллизации и в результате химических реакций. При кристаллизации происходит выделение из раствора галита, гипса, барита, флюорита. Второй путь, который преобладает, – осаждение в результате химических реакций. Рассмотрим более детально второй путь осаждения минералов. Химические реакции могут быть обменными и более сложными, если удаляются и выделяются продукты реакции (CO2 и др.). Критериями, позволяющими определить формы переноса, служат: 1. Химический состав минералов наблюдаемой парагенетической ассоциации. 2. Характер и интенсивность изменения вмещающих пород. 3. Состав газово-жидких включений в минералах рассматриваемого генезиса. 4. Физико-химические свойства соединений, в форме которого возможен перенос рассматриваемого элемента. Они должны соответствовать реальности нахождения именно такого соединения в физико-химических условиях рудообразования. Рассмотрим примеры указанных четырех вариантов. Реализация первого варианта может осуществляться, если вместо очень устойчивого магнетита наблюдается парагенезис сидерита с гематитом. Это явление объясняется очень высоким парциальным давлением CO2. По второму варианту изменение вмещающих пород состоит в следующем. Происходят важные процессы преобразования минералов, связанные со сменой щелочного или кислотного характера среды на окислительные условия. Например, серицитизация или карбонатизация пород в результате воздействия щелочных растворов; каолинитизация, порфиритизация, реже алунитизация пород при участии кислых растворов. Высокое содержание в растворах CO2 вызывает образование кальцита или доломита. Содержащийся в растворе H2S приводит к осветлению пород, разрушению темноокрашенных железистых минералов с выносом железа в виде пирита. Ионы фтора вызывают фторитизацию породы или образование фторсодержащих слюд. При более высоких температурах растворы с фтором образуют топаз. Если растворы натриевые, то происходит альбитизация породы, а при понижении температуры – цеолитизация. Калиевые растворы приводят к серицитизации породы. По третьему варианту состав газово-жидких включений в минералах служит достоверным признаком для выяснения состава рудоотлагающего раствора. В процессе роста кристалла важно использовать первичные включения, которые соответствуют первоначальному раствору. Вторичные используются для заполнения трещин в кристалле. По четвертому варианту рассмотрим реальные соединения, существование которых ограничено составом рудообразующего раствора и типом замещения вмещающих пород: • щелочные элементы переносятся в расплавах и растворах в виде элементарных ионов K+, Na+, Ba2+ и т.д. При высоких температурах может происходить возгон галогенидов NaCl, KCl и др.; • галогениды могут переноситься в виде элементарных анионов (F–, Cl–, B–, I–) в растворах. Однако фтор со щелочноземельными элементами Pb2+, Cd2+ образует труднорастворимые соединения; • сера транспортируется в виде газообразного H2S или его водных растворов в форме HS–, S2– при щелочной реакции, в эндогенных про цессах – в виде молекулы газа: S2. Многие халькофильные элементы (Cu, Sn, As и др.) и переходные с достроенными электронными оболочками (Ti, V, Cr, Zr, Tr, U и др.) с высокой валентностью при средних ионных радиусах создают форму переноса в виде комплексных соединений: [Fe3+(C2O4)3]3–, [Si(W3O10)4]4–, [Sn(F, OH)6]2–. Они образуют минералы, которые могут отлагаться при изменении температуры. На осаждение комплексных ионов влияет гидролиз, отложение карбонатов, окислительно-восстановительные условия.
Вулканические возгоны. Генетический тип минеральных видов при вулканических возгонах (эксгаляциях) связан с деятельностью летучих компонентов, отделившихся от магмы и покинувших место ее кристаллизации. Это происходит в местах тектонических трещин и областях активного вулканизма, когда магматический очаг связан через трещины с земной поверхностью. Летучими компонентами вулканических возгонов являются H2O, HCl, NH4Cl, H3BO3, H2S, CO2, P2O5 и др. При выходе на по- верхность они частично оседают на стенках трещин жерл в виде возгонов (эксгаляций), образуют конусы и трубы. Главную функцию здесь выполняет процесс окисления: 16 H2S + 16 O2 → 16 H2O + 8 SO2 + 4 S2↓; 16 H2S + 8 SO2 → 16 H2O + 3 S8↓. Происходит взаимодействие паров хлорного железа с водой: 2 FeCl3 + 3 H2O → Fe2O3↓ + 6 HCl. Аналогично образуются NaCl, KCl, NH4Cl, H3BO4, ряд сульфатов, сульфидов, квасцы, алуниты. Отложения минералов представлены в виде корок, налетов, друз, натеков. С современным вулканизмом связано образование залежей серного колчедана, железных руд, ртутно-сурьмяных и металлоносных осадков в подводных рифтах. Формирование многих рудных месторождений некоторые авторы объясняют палеовулканизмом. В осаждении руд участвует термодинамический кислородный (на суше) и щелочной (на дне океанов) геохимические процессы.
Пегматитовый процесс. При раскристаллизации магмы часть легколетучих компонентов не имеет возможности уйти из расплава и постепенно отжимается в незакристаллизовавшуюся часть расплава и насыщает его обычно в конце процесса. Такой расплав, перенасыщенный летучими компонентами, называется остаточным, а сам процесс – пегматитовым. Кристаллизация такого расплава протекает иначе. Геохимические исследования пегматитов были начаты А. Е. Ферсманом (1942). Пегматитовый процесс он разделил на пять этапов и одиннадцать геофаз. Завершающее место этого процесса показано в общем процессе эволюции магматизма: ● B (800–700 °C) – в контактной зоне с породой удерживает гранит или магнетит; ● C (700–600 °C) – пегматитовая зона с прорастанием кварца и полевого шпата; ● D–E (600–500 °C) – образование породы с пегматитовыми жилами, удерживает шерл, мусковит, берилл; ● F–G (500–400 °C) – флюидно-гидротермальные условия, образующие пневматолитовые минералы – зеленые слюды, альбит, литиевые соединения и др. ● H–I–K–L (400– 50 °C) – гидротермальные процессы с образованием зеленых слюд (жильбертит, кукеит), сульфидов, карбонатов, цеолитов. В пегматитах химические элементы распределены контрастно с перемешиванием легких и тяжелых. Ведущие элементы пегматитов: H, Li, Be, O, Si, Al, Na, K, Rb,Cs, Tr; главные: B, F, Sc, P, Sn; запрещенные: Ne, Co, Ni, As, Se, Br, Kr, Ru, Rh, Pd, In, Os, Ir, Pt, Hg, Xe. Другие элементы относятся к случайным. Таким образом, пегматиты обогащены редкими, преимущественно литофильными и летучими компонентами. Преобладают элементы нечетных порядковых номеров с нечетной валентностью, особенно одно- и трехвалентные. Наиболее распространены гранитные пегматиты как источники Ta, Li, Cs, оптического флюорита, ювелирных камней, полевого шпата, слюды, пьезокварца и другого ценного сырья. Пегматиты щелочной магмы содержат руды Nb и TR. Менее распространены пегматиты основных и ультраосновных пород. Все они формируются на глубинах от 2 до 15 км и более. Элементы гранитных пегматитов, как правило, образуют ионы, аналогичные природным газам и представляют собой системы низкого энергетического уровня с малыми величинами энергии решеток минералов. Пегматиты более характерны для докембрийских гранитов, их меньше – в палеозойских и мезозойских. Известны их образования как на щитах, так и в складчатых поясах. Главные особенности пегматитового процесса в минералообразовании: 1.Расплав с обилием летучих компонентов менее вязкий и снижает температуру кристаллизации. Это приводит к образованию закономерных срастаний минералов, которые первоначально получили название пегматит. 2. По мере снижения температуры кристаллизация пегматитов сменяется образованием крупных индивидов полевого шпата и кварца. Эти агрегаты называются пегматоидными. 3. Дальнейшее остывание остаточного расплава приводит к смене пегматоидной кристаллизации на образование блоковых агрегатов, иногда по несколько тонн весом, либо с образованием чисто поле- вошпатовой зоны. Кристаллы другого минерала вытесняются. 4. После исчерпания материала для кристаллизации блокового полевого шпата остающийся в избытке кварц завершает кристаллизацию, образуя кварцевое ядро с участием постмагматического процесса. 5. К зоне кварцевого ядра (кварцевой оси) бывают приурочены полости (занорыши), стенки которых усажены кристаллами дымчатого кварца, топаза, берилла, турмалина. 6. Летучие компоненты удерживаются в остаточном расплаве наиболее долго и принимают участие в формировании слюды (мусковита), топаза, турмалина, флюорита, апатита. 7. Постмагматические растворы могут взаимодействовать с минералами, образовавшимися на предшествующих этапах, выщелачивать, изменять их, вызывая метасоматические замещения, и усложнять состав пегматитового тела [образование слюды, берилла, сподумена (Li), танталит-колумбита (Ta – Nb), касситерита (Sn)]. 8. Пегматиты как продукт кристаллизации остаточного расплава могут реже образовываться при кристаллизации любых пород: габбро-пегматитов, дунит-пегматитов, сиенит-пегматитов, пегматитов нефелиновых сиенитов. 9. Образование пегматитов происходит на разных, но небольших глубинах: 1,5 – 3,5 км – камерные (хрусталеносные и флюоритоносные); 3,5 – 7 – редкометалльные; 7 – 11 – мусковитовые; более 11 км – редкометалльные и керамические. 10. С гранитными пегматитами связаны промышленные месторождения Li, Be, Nb, Ta, Sn, U, Th, Cs, Rb, редких земель (TR), слюд и керамического сырья. Пегматиты нефелиновых сиенитов и сиенит- пегматиты концентрируют Zr, Hf, U, Th, Nb, Ta, TR, Ti. Пегматитовые занорыши дают драгоценные камни: берилл, турмалин, топаз, хризоберилл, а также пьезокварц, оптический флюорит и турмалин.
|
||||
Последнее изменение этой страницы: 2016-07-16; просмотров: 536; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.78.203 (0.007 с.) |