Классификация и конструкция сушилок 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Классификация и конструкция сушилок



Классификация и конструкция сушилок

 

Процесс сушки проводят при различных способах передачи тепла: конвективная и контактная сушка, сушка токами высокой частоты, сушка инфракрасными лучами (радиационная сушка), сушка сублимацией. Первые три метода наиболее распространены в химической промышленности.

При конвективной сушке тепло передается от теплоносителя к поверхности высушиваемого материала, и происходит испарение влаги с поверхности материала в теплоноситель. В качестве теплоносителей применяют воздух, топочные или инертные газы.

При контактной сушке идет передача от обогреваемой перегородки к материалу, лежащему на ней (противни с подогревом снизу, металлические барабаны с наружным газовым или водяным обогревом, металлические обогреваемые изнутри вальцы, по поверхности которых движется паста, непрерывная лента высушиваемого материала). Влага поглощается либо воздухом, либо промежуточной средой.

При радиационной сушке тепло передается тонкому слою материала, либо поверхности его, покрытой лаками и красками, от электрических или газовых инфракрасных излучателей. Сушка протекает интенсивно. Сушилки отличаются малой инерционностью.

Электрический ток (высокой или промышленной частоты) применяется для сушки древесины, пенопласта, искусственного волокна и т.д. При сушке древесины быстро прогреваются внутренние слои материала, направления потоков влаги и тепла совпадают и процесс резко ускоряется. Этот метод отличается дороговизной.

Сушка сублимацией, или молекулярная сушка, которая происходит при значительном вакууме в сушильной камере, чаще применяется в пищевой, чем в химической промышленности, с целью сохранения объема, цвета, запаха, вкусовых и биологических свойств материала. Этот метод используется при получении сгущенного и сухого молока. Оборудование для этого метода отличается высокой сложностью.

Сушка в жидких средах является относительно новым методом, при котором высушиваемый материал помещают в высококипящую среду (t = 150°C). Обычно этот метод используется для сушки древесины при одновременной ее пропитке.

Следует также упомянуть о сушке со сбросом давления, когда влага выделяется из нагретого материала при сбросе давления в сушильной камере.

Помимо указанных, существуют комбинированные методы сушки, при которых совмещаются конвективная и высокочастотная сушка, сушка инфракрасными лучами и воздушная конвективная сушка, что снижает затраты на сушку (сушка кинопленки).

Из разнообразия возможных методов сушки следует множество конструкций сушилок для осуществления тех или иных методов. По технологическим признакам сушилки можно классифицировать следующим образом:

ü по давлению (атмосферные и вакуумные);

ü по периодичности процесса (периодического, полунепрерывного и непрерывного действия);

ü по способу подвода тепла (конвективные контактные, радиационные и сушилки с нагревом материала токами высокой частоты);

ü по роду сушильного агента (воздушные, газовые сушилки и сушилки на перегретом или насыщенном паре);

ü по направлению движения материала и теплоносителя (прямоточные, противоточные и перекрестного тока);

ü по тепловой схеме (калориферные, с дополнительным внутренним обогревом, с рециркуляцией части отработанного воздуха, со ступенчатым подогревом и комбинированные, например, со ступенчатым подогревом и рециркуляцией);

ü по способу обслуживания (с ручным обслуживанием и механизированные);

ü по способу нагрева (с паровым, огневым, газовым и электронагревом);

ü по циркуляции теплоносителя (с естественной, искусственной циркуляцией, однократной и многократной циркуляцией).

Типовые конструкции сушилок: шкафные, камерные, туннельные, шахтные, ленточные, барабанные, вальцевые (контактные), пневматические, распыляющие, с кипящим слоем, вибрационные.

Выбор давления в сушилках определяется химическим составом продукта, условиями его окисления и разложения, допускаемой температурой нагрева. В атмосферных сушилках давление либо атмосферное, либо несколько выше его. Эти сушилки используются для сушки большинства химических продуктов.

Вакуумные сушилки применяются при сушке химикатов для обработки цветной кинопленки, красителей, крошки смолы лавсан, полиамидной крошки смолы капрон и т.д. В химической технологии в качестве сушильного агента широко используется воздух (сушка калийных солей, анилиновых красителей), топочные газы (сушка суперфосфата натрия и т.д.), инертные газы (сушка поликапроамида в токе азота).

Наиболее экономичными по затрате тепла являются противоточные сушилки. Прямоточные сушилки применяются в тех случаях, когда высушиваемый материал не выдерживает высокой температуры в конце сушки. Как видно из приведенной классификации, по конструктивным особенностям сушилки весьма разнообразны. Барабанные сушилки широко применяются при сушке топлива, руды, удобрений, ядохимикатов, сопутствующих продуктов и т.д.

Тепловой расчет процесса сушки

 

В ходе данной части расчета определены основные параметры сушильного агента, размеры сушильного барабана, параметры его тепловой изоляции, необходимое количество теплоты для осуществления процесса и проверена скорость движения сушильного агента по уносу частиц основной фракции.

Построение рабочей линии реального процесса

 

Для построения линии реального процесса и определения параметров сушильного агента на выходе из реальной установки необходимо определить потери теплоты с материалом и в окружающую среду, поскольку другие виды потерь (с транспортирующими устройствами) и подвода теплоты в сушильном барабане нет.

Расчет скорости движения воздуха

 

Расчет скорости движения воздуха в сушилке необходим для проверки возможности уноса основной фракции частиц высушиваемого материала сушильным агентом, что является недопустимым.

Расчет тепловой изоляции барабана

 

Для уменьшения потерь теплоты в окружающую среду (и, следовательно, экономии энергетических ресурсов), а также с точки зрения трудовой гигиены (поддержание необходимой температуры в производственном помещении, являющейся частью показателей микроклимата рабочей зоны, устанавливаемых санитарными нормами для производственных помещений) и безопасности труда (предотвращение травматизма на рабочем месте, связанного с получением персоналом ожогов от нагретого до высокой температуры оборудования) применяют тепловую изоляцию сушильного барабана.

Тепловая изоляция барабанов сушилок, выпускаемых на заводе «Прогресс» осуществляется после установки аппаратуры заказчиком или привлекаемой им организацией. Изготовление тепловой изоляции барабана на заводе не предусматривается.

Потери тепла происходят за счет того, что внутренняя стенка сушильного барабана нагревается от сушильного агента при его движении по длине барабана. От внутренней стенки теплота передается теплопро­водностью через слой изоляции к внешней стенке (обшивке тепловой изоляции) и далее окружающему воздуху, рассеиваясь в пространстве. В основе расчета лежит необходимость максимально сократить потери теплоты в окружающую среду и не допустить чрезмерного нагрева обшивки изоляции.

Расчет нагрузки на опоры барабана

По каталогу [12] масса полностью снаряженного барабана равна:

G6 = 14630 кг.

Определили массу материала, находящегося в барабане:

GК =2490 кг.

Найдем общий вес барабана с материалом:

G = 14630 + 2490 + 14630*0,3+2490*0,3=2225,6 кг.

 

Расчет и выбор вспомогательного оборудования

Выбор схем калориферной установки

В ходе расчета рассматривали параллельно 2 схемы калориферной установки. По первой схеме в ряду предусматривалась установка одного калорифера, по второй – двух. Требуемое число рядов, модель калорифера и его типоразмер определялись в ходе расчета.

Расчет циклона

 

Унос частиц материала сушильным агентом может достигать значительной величины из-за высокой скорости движения воздуха в барабане и полидисперсности высушиваемого материала (наличие значительной фракции частиц, размер которых значительно меньше среднего диаметра частиц). Для улавливания пыли применяются различные способы сепарации частиц материала из газового потока. Одним из наиболее распространенных в химической промышленности для этих целей устройств являются циклоны. Действие этого аппарата основано на ис­пользовании центробежной силы: частицы материала, содержащиеся в газе, под действием этой силы отбрасываются к стенкам аппарата и под действием силы тяжести осыпаются в нижнюю часть циклона.

Расчет циклона основывается на данных о содержании пыли на выходе из барабана и распределении частиц высушиваемого материала по размеру. Эти данные получают непосредственно из испытаний установки. Поскольку такие данные отсутствуют, расчет циклона провели для запыленности «в разумных пределах» ~ 80 г/см3.

В связи с тем, что производительность установки по воздуху весь­ма значительна (соответствует ранее найденному значению объемного расхода отработанного сушильного агента на выходе из сушильного барабана (V=2,77 м3 = 9972 м3/час), приняли в качестве предполагаемой схемы пылеосадительного устройства сборку из четырех циклонов типа ЦН-15 по, [11, стр.42].

Коэффициент гидравлического сопротивления циклона при чистом газе по [11, стр.42] ; поправочный коэффициент на принятую запыленность газа по [11, стр.38, табл.1] К 2 = 0,9.

Коэффициент гидравлического сопротивления циклона по пыльному газу найдем по [11, стр.42]:

Примем режим работы циклона из условия оптимальной работы циклона серии ЦН в пределах 50 – 100 м:

Определим условную скорость газа по [11, стр.18]:

Среднее парциальное давление водяных паров в отработанном воздухе определим по уравнению [5, стр.298, ф.(9.18)]:

,

где Mасв = 29 кг/кмоль – молярная масса воздуха, Mв = 18 кг/кмоль – молярная масса воды.

Па

Вычислим плотность воздуха, поступающего в циклон, по [5, стр.302]:

,

где - мольный объем при стандартных условиях,

T0 = 273,15 K – стандартная температура.

кг/м3

Найдем требуемый диаметр циклонов в группе по [11, стр.25]:

,

где n = 1 – число циклонов в сборке.

м

Примем ближайший стандартный диаметр циклона D = 0,6м. Проверим условную скорость по [11, стр.26]:

м/с

Проверим режим работы циклона по [11, стр.8, ф.(1)]:

м

Режим работы соответствует оптимальному режиму. Найдем потери давления на циклоне: Па

Определим необходимые размеры циклонов по [13, стр.37, табл.4]: ширина входного патрубка м, высота входного патрубка, м, высота цилиндрической части циклона м, радиус циклона R2 = 0,3 м, радиус выхлопной трубы

м

Найдем число оборотов газового потока в циклоне по [11, стр.18]:

Вычислим скорость во входном патрубке каждого из циклонов по [11, стр.19]:

м/с

Определим по [2, стр.530, рис. VI] коэффициент динамической вязкости воздуха .

Определим предельный размер улавливаемых частиц по [11, стр.11, ф.(6)]:

м =1,5 мкм

Окончательно выбираем циклон ЦН-15 диаметром 600 мм.

Расчет вентилятора

 

Вентиляторы представляют собой устройства, перемещающие газовые среды со степенью повышения давления до 1,15. В промышленности наиболее широкое распространение получили центробежные вентиляторы. Для приведения вентилятора в движение обычно используют асинхронные электродвигатели. Наиболее часто используется непосредственное соединение вала электродвигателя с вентилятором.

В сушильной установке вентилятор обеспечивает необходимый расход воздуха через установку, преодолевая ее аэродинамическое сопротивление, а также сопротивление трубопроводов.

Выбор электрофильтра

 

Для снижения концентрации пыли в отработанном воздухе сушильной установки, которая не должна превышать санитарных норм (предельно допустимая концентрация пыли в воздухе рабочей зоны), устанавливают вторую ступень очистки воздуха. В качестве второй ступени используют мокрые пылеуловители или электрофильтры.

Электрофильтры применяются при больших объемах очищаемого газа как наиболее эффективные пылеочистительные устройства (степень очистки до 99%). Кроме того, высушиваемый материал растворим в воде, и для его выделения пришлось бы направлять сточные воды мокрого пылеуловителя на выпарку, кристаллизацию и возвращать на сушку. Использование же электрофильтра позволяет напрямую отправлять осажденный материал на выходной конвейер установки.

В электрофильтре запыленный газ проходит через постоянное электрическое поле высокого напряжения (несколько тысяч вольт), под действием которого газ почти полностью ионизируется (наблюдается ударная ионизация). Ионизация - процесс распада газа на ионы и электроны. Электроны быстро движутся к противоположному по знаку электроду, вызывая протекание тока через газ (коронирующий разряд). Образующиеся ионы сталкиваются с частицами пыли и заряжают их. Заряженные частицы пыли отклоняются в электрическом поле к осадительным электродам, заряженным положительно, и осаждаются на них. Удаление пыли с электродов осуществляется периодическим встряхиванием последних посредством специального устройства.

Для предотвращения искрового разряда между электродами (короткого замыкания) электрическое поле делают неоднородным, для чего используют электрода специальной формы: трубчатые и пластинчатые.

Выбор электрофильтра осуществляется по требуемой производительности по очищаемому газу из условия того, что скорость движения газа в электрофильтре должна лежать в определенных пределах (обычно ).

Требуемая производительность электрофильтра по газу составляет V=2,77 м3 = 9972 м3/час. Этой производительности соответствует односекционный электрофильтр ЭГА-10-4-6-3 (производительность до 39600 м3/ч при скорости газа 1 м/с, активный объем 126,7 м3, площадь активного сечения 11 м2, площадь поверхности осаждения 967 м2, массовая концентрация пыли на входе не более 90 г/м3, масса 27000 кг. В рассчитываемой установке скорость газа в электрофильтре составит: м/с, что не выходит за рекомендованные рамки.

 

4.7 Выбор питателя

 

Шнековые питатели (конвейеры) предназначены для пневмотранспорта пылевидных и мелко зернистых материалов. Они обеспечивают непрерывную и равномерную подачу пыли в трубопровод. Модифицированный питатель состоит из загрузочной камеры, быстроходного шнека с электродвигателем, броневой гильзы, смесительной камеры с обратным грузовым клапаном и коллектора для подвода сжатою воздуха. Шнек выполнен с уменьшенным шагом заборных и увеличивающимся шагом напорных витков, что улучшает работу питателя (не требует дозатора, исключает пиковые нагрузки и уменьшает износ шпека). Шнек закрепляется на валу электродвигателя через специальную втулку с помощью шпильки, проходящей внутри вала шнека, и вала электродвигателя. Рабочая поверхность витков шнека наплавляется износоустойчивыми электродами. Конструкция подвески обратного клапана выполнена на выносных опорах. Лобовая крышка смесительной камеры быстросъёмная.

Питатели устанавливают непосредственно под бункерами за шиберным затвором, необходимым для прекращения подачи пыли в насос при проведении ремонтных работ. В зависимости от физико-механических свойств транспортируемых материалов шнек выполняется с постоянным или переменным (уменьшающимся) шагом для придания материалу уплотнения перед разгрузкой в трубу. Скорость вращения шнека обычно находится в пределах 750 – 1000 об/мин; подаваемый им материал принудительно направляется в диффузор, служащий одновременно и смесительной камерой. Вход в смесительную камеру может быть закрыт клапаном в аварийных случаях, например, при заклинивании шнеквала. Привод вала может быть ручным или пневматическим. Выбираем по [15, стр.547] по производительности шнековый питатель К-287С.

Производительность, т/ч.......................10

Дальность подачи, м:

по iгоризонтали......................................200

по вертикали...........................................30

Давление воздуха в трубе, Н/см2………40

Расход воздуха м3/мин..........................4,1

Диаметр трубопровода, мм…………..100

Мощность электродвигателя, кВт…….14

Габаритные размеры…………….2,38×5,2×0,65

Масса, т………………………………..0.9

У питателей типа К вследствие уменьшения шага витков шнека и постепенного уплотнения материала требуются повышенные скорости истечения воздуха на сопел (для лучшего дыхания). В условиях больших длин трубопровода это приводит к повешению расхода и давления в рабочей камере, осoбеннo для матеpиалов, склонных к слеживанию в этих условиях потери давления в камере смешения достигают (100 - 150)кПа. Срок службы шнека на абразивных материалах снижается до 300ч, а с наплавкой шнека не превышает 600ч.

Для снижения подачи пыли шнековыми питателями предусмотрено регулирование скорости вращения шнека через текстропную передачу.

 

4.8 Расчет затвора

 

Затворы предназначены для загрузки и выгрузки материала из сушильного аппарата, выгрузки пылевидных материалов из бункеров пылеулавливающих аппаратов.

Рассчитаем условный диаметр затвора-мигалки, который также обеспечивает ликвидацию подсосов воздуха в аппараты:

где Gул – масса уловленной пыли (твердого материала), пропускаемой через мигалку, кг/с;

q – удельная нагрузка мигалки (можно принять равной 60 – 100 кг/(см2·ч)).

кгСМ/с

мм

Принимаем d = 100 мм [15,стр. 538, табл. П.2.9.1].

 

4.9 Расчет бункера

 

Бункеры представляют собой грузохранилища требуемой емкости. Они могут быть различной геометрической формы.

Рассчитаем бункер, имеющий цилиндрическую обечайку и коническое днище с углом 600.

Расчет бункера имеет приблизительный характер, т.к. его размеры определяют из того соображения, что в бункере содержаться материала в количестве запаса примерно на 2 часа.

Найдем двухчасовой объем материала из расхода влажного материала:

м2

Для расчета бункера воспользуемся основами геометрии.

Объем цилиндрической части:

Для нахождения объема конуса необходимо знать его высоту, которую определим из прямоугольного треугольника (на рисунке не показан):

Объем конуса:

Полный объем бункера:

Поскольку полный объем бункера равен двухчасовому объему материала, а высота цилиндрической части обычно почти равна его диаметру, то получим следующее уравнение:

Тогда диаметр бункера будет равен:

м

Выбираем бункер с диаметром цилиндрической части 2 м.


Классификация и конструкция сушилок

 

Процесс сушки проводят при различных способах передачи тепла: конвективная и контактная сушка, сушка токами высокой частоты, сушка инфракрасными лучами (радиационная сушка), сушка сублимацией. Первые три метода наиболее распространены в химической промышленности.

При конвективной сушке тепло передается от теплоносителя к поверхности высушиваемого материала, и происходит испарение влаги с поверхности материала в теплоноситель. В качестве теплоносителей применяют воздух, топочные или инертные газы.

При контактной сушке идет передача от обогреваемой перегородки к материалу, лежащему на ней (противни с подогревом снизу, металлические барабаны с наружным газовым или водяным обогревом, металлические обогреваемые изнутри вальцы, по поверхности которых движется паста, непрерывная лента высушиваемого материала). Влага поглощается либо воздухом, либо промежуточной средой.

При радиационной сушке тепло передается тонкому слою материала, либо поверхности его, покрытой лаками и красками, от электрических или газовых инфракрасных излучателей. Сушка протекает интенсивно. Сушилки отличаются малой инерционностью.

Электрический ток (высокой или промышленной частоты) применяется для сушки древесины, пенопласта, искусственного волокна и т.д. При сушке древесины быстро прогреваются внутренние слои материала, направления потоков влаги и тепла совпадают и процесс резко ускоряется. Этот метод отличается дороговизной.

Сушка сублимацией, или молекулярная сушка, которая происходит при значительном вакууме в сушильной камере, чаще применяется в пищевой, чем в химической промышленности, с целью сохранения объема, цвета, запаха, вкусовых и биологических свойств материала. Этот метод используется при получении сгущенного и сухого молока. Оборудование для этого метода отличается высокой сложностью.

Сушка в жидких средах является относительно новым методом, при котором высушиваемый материал помещают в высококипящую среду (t = 150°C). Обычно этот метод используется для сушки древесины при одновременной ее пропитке.

Следует также упомянуть о сушке со сбросом давления, когда влага выделяется из нагретого материала при сбросе давления в сушильной камере.

Помимо указанных, существуют комбинированные методы сушки, при которых совмещаются конвективная и высокочастотная сушка, сушка инфракрасными лучами и воздушная конвективная сушка, что снижает затраты на сушку (сушка кинопленки).

Из разнообразия возможных методов сушки следует множество конструкций сушилок для осуществления тех или иных методов. По технологическим признакам сушилки можно классифицировать следующим образом:

ü по давлению (атмосферные и вакуумные);

ü по периодичности процесса (периодического, полунепрерывного и непрерывного действия);

ü по способу подвода тепла (конвективные контактные, радиационные и сушилки с нагревом материала токами высокой частоты);

ü по роду сушильного агента (воздушные, газовые сушилки и сушилки на перегретом или насыщенном паре);

ü по направлению движения материала и теплоносителя (прямоточные, противоточные и перекрестного тока);

ü по тепловой схеме (калориферные, с дополнительным внутренним обогревом, с рециркуляцией части отработанного воздуха, со ступенчатым подогревом и комбинированные, например, со ступенчатым подогревом и рециркуляцией);

ü по способу обслуживания (с ручным обслуживанием и механизированные);

ü по способу нагрева (с паровым, огневым, газовым и электронагревом);

ü по циркуляции теплоносителя (с естественной, искусственной циркуляцией, однократной и многократной циркуляцией).

Типовые конструкции сушилок: шкафные, камерные, туннельные, шахтные, ленточные, барабанные, вальцевые (контактные), пневматические, распыляющие, с кипящим слоем, вибрационные.

Выбор давления в сушилках определяется химическим составом продукта, условиями его окисления и разложения, допускаемой температурой нагрева. В атмосферных сушилках давление либо атмосферное, либо несколько выше его. Эти сушилки используются для сушки большинства химических продуктов.

Вакуумные сушилки применяются при сушке химикатов для обработки цветной кинопленки, красителей, крошки смолы лавсан, полиамидной крошки смолы капрон и т.д. В химической технологии в качестве сушильного агента широко используется воздух (сушка калийных солей, анилиновых красителей), топочные газы (сушка суперфосфата натрия и т.д.), инертные газы (сушка поликапроамида в токе азота).

Наиболее экономичными по затрате тепла являются противоточные сушилки. Прямоточные сушилки применяются в тех случаях, когда высушиваемый материал не выдерживает высокой температуры в конце сушки. Как видно из приведенной классификации, по конструктивным особенностям сушилки весьма разнообразны. Барабанные сушилки широко применяются при сушке топлива, руды, удобрений, ядохимикатов, сопутствующих продуктов и т.д.



Поделиться:


Последнее изменение этой страницы: 2016-08-01; просмотров: 645; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 35.153.156.108 (0.064 с.)