Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Волновое сопративление. Реверберация.Содержание книги
Поиск на нашем сайте
Произведение рс для плоской волны называют волновым сопротивлением, где р — плотность среды, с — скорость звуковой волны в среде. Волновое сопротивление — важнейшая характеристика среды, определяющая условия отражения и преломления волн на ее границе. Представим себе, что звуковая волна попадает на границу раздела двух сред. Часть волны отражается, а часть — преломляется. Законы отражения и преломления звуковой волны аналогичны законам отражения и преломления света. Преломленная волна может поглотиться во второй среде, а может выйти из нее. Во всяком закрытом помещении отраженный от стен, потолков, мебели звук падает на другие стены, полы и пр., вновь отражается и поглощается и постепенно угасает. Поэтому даже после того, как источник звука прекратит действие, в помещении все еще имеются звуковые волны, которые создают гул. Особенно это заметно в больших просторных залах. Процесс постепенного затухания звука в закрытых помещениях после выключения источника называют реверберацией. Реверберация, с одной стороны, полезна, так как восприятие звука усиливается за счет энергии отраженной волны, но, с другой стороны, чрезмерно длительная реверберация может существенно ухудшить восприятие речи, музыки, так как каждая новая часть текста перекрывается предыдущими. В связи с этим обычно указывают некоторое оптимальное время реверберации, которое учитывается при постройке аудиторий, театральных и концертныхзалов
12. Основные физические свойства звука: Высота. Как Вы знаете, источником звучания инструмента является колебание струн, переходящее в колебание воздуха. Таким образом, толстые и длинные струны издают низкий (мягкий) звук, а вот тонкие и короткие - высокий. То есть получается, что звук будет выше, при меньшей массе музыкального тела. При этом соотношение частоты колебания звуков между звуками отстоящих друг от друга на октаву равно 2 к 1. То есть Соль первой октавы имеет частоту 392 Гц, а второй октавы - в два раза больше - 784 Гц Тут приведем таблицу звуков частот каждой из нот!!! Громкость звука Так же может называться динамикой и силой звука. Идиница измерения - децибелы (обозначается дБ). При этом если звук увеличивается в 2-а раза, это значит увеличение громкости звука на 10 дБ. Чрезмерная громкость звука вредна для человеческого здоровься, так вредный порог начинается с 90 дБ, а болезненный со 130 дБ, при этом звук более 180 дБ уже смертельно опасен.
Исли мы приведем таблицу громкости, то будет видно, что рок-концерты обладают весьма существенной динамикой.
От сюда видно, что рок-концерты находятся во вредном диапазоне звучания. Именно поэтому во многих странах действую ограничения на громкость звука. В принципе на концерты мы ходим не каждый день, поэтому организм успешно справляется с таким стрессом. Тембр Понятие тембра можно рассмотреть на примере певцов. Вспомните - каждый певец имеет неповторимое звучание своего голаса, а всё благодаря чему? Благодаря уникальному строению своих голосовых связок и различных резонаторов внутренних органов (легкие, горло, зубы и так далее), которые добавляют к "основному" звучанию (к основному тону) различные призвуки. Именно голоса с одинаковой частотой звучат совершенно по-разному. Так и у гитары (да и у любого струнного инструмента). Во время игры струны звучат не только целиком, но к их звучанию добаляются коллебания половины струны, четверти и так далее. Да, эти звуки называются обертонами. Об обертонах мы говорим в статье о Флажолетах в нашем самоучителе. Ну и осталось сказать только о человеческом слухе. Слух делится на три типа - тембровый, звуковысотный, динамический. То есть некоторые люди воспринимают звуки по-разному. Одни люди больше обращают внимание на громкость звука, другие на его чувсвительность и интонацию. Одним из самых полезных для музыканта является - звуковысотный слух. Именно он позволяет улавливать различие между тонами (по сути слышать каждую ноту), тем самым помагая уловить эмоциональную окраску произведения. Чем больше человек занимается музыкой, тем больше у него начинает развиваться музыкальный слух во всех его проявлениях.
Физика слуха Ушная раковина у человека играет существенной роли для слуха. Она способствует определению локализации источника звука при его расположении в переднезаднем направлении. Звук от источника попадает в ушную раковину. В зависимости от положения источника в вертикальной плоскости звуковые волны будут по-разному дифрагировать на ушной раковине из-за ее специфической формы. Это приведет и к изменению спектрального состава звуковой волны, попадающей в слуховой проход.
Обладая двумя звукоприемниками (ушами), человек и животные способны установить направление на источник звука и в горизонтальной плоскости (бинауральный эффект). Это объясняется тем, что звук от источника до разных ушей проходит разное расстояние и возникает разность фаз для волн, попадающих в правую и левую ушные раковины.
Кроме фазового различия бинауральному эффекту способствует неодинаковость интенсивностей звука у разных ушей, а также и «акустическая тень» от головы для одного уха. Звуковая волна проходит через слуховой проход и частично отражается от барабанной перепонки. В результате интерференции падающей и отраженной волн может возникнуть акустический резонанс. В этом случае длина волны в четыре раза больше длины наружного слухового прохода. Длина слухового прохода у человека приблизительно равна 2,3 см; следовательно, акустический резонанс возникает при частоте
Наиболее существенной частью среднего уха являются барабанная с соответствующими мышцами, сухожилиями и связками. Косточки осуществляют передачу механических колебаний от воздушной среды наружного уха к жидкой среде внутреннего. Жидкая среда внутреннего уха имеет волновое сопротивление, приблизительно равное волновому сопротивлению воды, при прямом переходе звуковой волны из воздуха в воду передается лишь 0,123% падающей интенсивности. Это слишком мало. Поэтому основное назначение среднего уха — способствовать передаче внутреннему уху большей интенсивности звука. Используя технический язык, можно сказать, что среднее ухо согласует волновые сопротивления воздуха и жидкости внутреннего уха. Еще одна из функций среднего уха — ослабление передачи колебаний в случае звука большой интенсивности. Это осуществляется рефлекторным расслаблением мышц косточек среднего уха. Среднее ухо соединяется с атмосферой через слуховую (евстахиеву) трубу. Наружное и среднее ухо относятся к звукопроводящей системе. Звуковоспринимающей системой является внутреннее ухо. Главной частью внутреннего уха является улитка, преобразующая механические колебания в электрический сигнал. Кроме улитки к внутреннему уху относится вестибулярный аппарат, который к слуховой функции отношения не имеет.
На основании этих наблюдений были разработаны теории, согласно которым восприятие высоты тона определяется положением максимума колебания основной мембраны. Таким образом, во внутреннем ухе прослеживается определенная функциональная цепь: колебание мембраны овального окна — колебание перилим-фы — сложные колебания основной мембраны — раздражение волосковых клеток (рецепторы кортиева органа) — генерация электрического сигнала.
Некоторые формы глухоты связаны с поражжение рецепторного аппарата улитки. В этом случае улитка не генерирует электрические сигналы при воздействии механических колебаний. Можно помочь таким глухим, для этого необходимо имплантировать электроды в улитку и подавать на них электрические сигналы, соответствующие тем, которые возникают при воздействии механического стимула
Такое протезирование основной функции улитки (кохлеарное протезирование) разрабатывается в ряде стран. В России кохлеарное протезирование разработано и осуществлено в Российском медицинском университете.
Кохлеарный протез показан на рис. 6.12, здесь 1 — основной корпус,, 2 — заушина с микрофоном3 — вилка электрического разъема для подсоединения к имплантируемым электродам.
15.Ультразвук — упругие звуковые колебания высокой частоты. Человеческое ухо воспринимает распространяющиеся в среде упругие волны частотой приблизительно до 16-20 кГц; колебания с более высокой частотой представляют собой ультразвук (за пределом слышимости). Обычно ультразвуковым диапазоном считают полосу частот от 20 000 до миллиарда Гц. Звуковые колебания с более высокой частотой называют гиперзвуком. В жидкостях и твердых телах звуковые колебания могут достигать 1000 ГГц.
|
|||||||||||||||||
Последнее изменение этой страницы: 2016-08-01; просмотров: 312; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.91.108 (0.01 с.) |