Лазеры и их применение в медицине 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Лазеры и их применение в медицине



Лазеры - это генераторы и усилители когерентного излучения в оптическом диапазоне, действие которых основано на индуцированном (вызванном полем световой волны) излучении квантовых систем - атомов, ионов, молекул, находящихся в состояниях, существенно отличных от термодинамического равновесия. Лазеры, как и мазеры, генераторы и усилители СВЧ диапазона, называют еще квантовыми генераторами (усилителями), поскольку поведение участвующих в их работе частиц описывается законами квантовой механики. Принцип работы и устройство лазера

Как уже отмечалось, генерация в лазере достигается за счет индуцированного излучения на некотором переходе между уровнями квантовой системы. Рисунок 1 демонстрирует возможные переходы в простейшей двухуровневой системе, как вызванные полем (поглощение и индуцированное излучение), так и не зависящие от него (спонтанное излучение и безизлучательная релаксация).

Рис. 1. Возможные переходы в двухуровневой системе. Вероятности: W c - спонтанного излучения, R - безизлучательной релаксации, W 12 - поглощения, W 21 - индуцированного излучения. n 2 и n 1 - плотности населенностей, и - времена жизни уровней. F 2 и F 1 - скорости накачки (число частиц, поставляемых в единицу времени и в единицу объема) на уровни 2 и 1.

В отсутствие внешнего поля спонтанное излучение и безизлучательные релаксационные процессы определяют время жизни частицы в возбужденном состоянии ( и на рис. 1) Из-за конечности этого времени (и из-за других причин, например доплеровского смещения частоты для движущихся микрочастиц) линия излучения, соответствующая переходу, оказывается уширенной [Советская энциклопедия, 1969].
Обозначенные на рисунке 1 вероятности имеют вид

и зависят как от свойств квантовой системы (через коэффициенты Эйнштейна B 21 и B 12), так и от приложенного поля - объемной плотности его энергии и совпадения частоты поля с центральной частотой перехода , что учитывается специальной функцией . При одинаковой степени вырождения уровней B 21 = B 12, W 21 = W 12 [Советская энциклопедия, 1969]. При этом, чтобы вынужденное излучение преобладало над поглощением, то есть число переходов вниз W 21 n 2 было больше числа переходов вверх W 12 n 1, необходимо, чтобы n 2 > n 1: на верхнем уровне частиц должно быть больше, чем на нижнем.
Среда, для которой выполняется условие n 2 > n 1, называется средой с инвертированной населенностью, и условие инверсии n 2 > n 1 является необходимым условием для усиления волны средой и работы лазера.
Ясно, что при термодинамическом равновесии инверсия существовать не может, поскольку, согласно закону Больцмана,

и на верхнем уровне частиц меньше, чем на нижнем. Поэтому для получения инверсии среду нужно увести от состояния равновесия.
Инверсия населенностей в лазерах достигается в результате совместного действия процессов заселения (накачки) соответствующих уровней и их дезактивации (очистки).
Согласно рисунку 1, для достижения стационарной инверсии необходимо выполнение соотношения

то есть произведение скорости накачки на время релаксации для верхнего уровня должно быть больше, чем для нижнего. Из этого следует, что предпочтительной является селективная накачка и что инверсия может быть достигнута не только за счет преимущественного заселения верхнего лазерного уровня, но и за счет высокой скорости очистки нижнего.
Заселение уровней в лазерах может осуществляться [Карлов Н.В., 1988, Тарасов Л.В., 1981]:
- за счет поглощения света (оптическая накачка). Подбирая источник света с соответствующим спектром, можно обеспечить высокую селективность накачки. Наиболее успешно этот вид накачки используется в твердотельных (на кристаллах и стеклах) лазерах и в лазерах на красителях.
- в неупругих столкновениях атомов и молекул со свободными электронами, при которых часть энергии электрона идет на возбуждение атома или молекулы. Свободные электроны могут создаваться или в газовом разряде, или вводиться в газ в виде пучка, сформированного в ускорителе.
- за счет неупругих столкновений атомов рабочего вещества с возбужденными атомами или ионами вспомогательного газа с передачей энергии возбуждения от них рабочему веществу. В некоторых типах столкновений передача энергии носит резонансный характер и достигается высокая степень селективности заселения уровней.
- в процессе специально подобранных химических реакций (химическая накачка); при этом возбуждаются колебательные уровни молекул, причем возбуждение может быть селективным.
- за счет нагрева (тепловая накачка). Этот метод используется для накачки колебательных уровней в молекулах, инверсия на переходах между которыми осуществляется за счет различных времен релаксации для верхнего и нижнего лазерных уровней при быстром адиабатическом расширении газа. На этом принципе основана работа газодинамических лазеров.
Очистка возбужденных состояний осуществляется: спонтанным излучением; в столкновениях с электронами или атомами примесного газа, при которых энергия возбуждения передается от рабочего вещества электронам или атомам примеси; при адиабатическом расширении газа; в специально подобранных химических реакциях.
Таким образом, среда с инверсией населенности способна усиливать световую волну. При коэффициенте усиления на единицу длины и длине среды l поданный на ее вход сигнал интенсивностью I1 будет усилен (при отсутствии насыщения) до значения на выходе; то есть таким образом может быть реализован оптический усилитель когерентного сигнала с коэффициентом усиления по мощности
Чтобы превратить усилитель в генератор, необходимо организовать обратную связь. В лазерах она достигается при помещении активного вещества между отражающими поверхностями (зеркалами), образующими так называемый "открытый резонатор" за счет того, что часть излученной активным веществом энергии отражается от зеркал и опять возвращается в активное вещество (рис. 2). Следует отметить, что система из двух параллельных зеркал обладает резонансными свойствами - резонирует только на определенных частотах - и выполняет в лазере еще и ту роль, которую в обычных низкочастотных генераторах играет колебательный контур. Использование именно открытого резонатора (а не закрытого - замкнутой металлической полости - характерного для СВЧ диапазона) принципиально, так как в оптическом диапазоне резонатор с размерами (L - характерный размер резонатора, - длина волны) просто не может быть изготовлен, а при закрытый резонатор теряет резонансные свойства, поскольку число возможных типов колебаний становится настолько большим, что они перекрываются [Советская энциклопедия, 1969]. Отсутствие боковых стенок значительно уменьшает число возможных типов колебаний (мод) за счет того, что волны, распространяющиеся под углом к оси резонатора, быстро уходят за его пределы, и позволяет сохранить резонансные свойства резонатора при .

Рис. 2. Принципиальная схема лазера.

Однако резонатор в лазере не только обеспечивает обратную связь за счет возврата отраженного от зеркал излучения в активное вещество, но и определяет спектр излучения лазера, его энергетические характеристики, направленность излучения [Тарасов Л.В., 1981].
В простейшем приближении плоской волны условие резонанса в резонаторе с плоскими зеркалами заключается в том, что на длине резонатора укладывается целое число полуволн: (q - целое число), что приводит к выражению для частоты типа колебаний с индексом q:

и расстоянию по частоте между соседними (q отличается на 1) модами:

На рисунке 3 приведен частотный профиль коэффициента усиления в рабочем веществе (он определяется шириной и формой линии рабочего вещества) и набор собственных частот открытого резонатора. Для используемых в лазерах открытых резонаторов с высокой добротностью полоса пропускания резонатора , определяющая ширину резонансных кривых отдельных мод (кривые 2-4 на рис. 3), и даже расстояние между соседними модами оказываются меньше, чем ширина линии усиления , причем даже в газовых лазерах, где уширение линий наименьшее. Поэтому в контур усиления попадает несколько типов колебаний резонатора.

Рис. 3. Частотная зависимость коэффициента усиления в рабочем веществе (кривая 1) и попадающие в контур усиления типы колебаний резонатора (2-4). При уровне потерь могут генерировать три моды, при - одна центральная.

Таким образом, лазер не обязательно генерирует на одной частоте, чаще наоборот, генерация происходит одновременно на нескольких типах колебаний, для которых усиление больше потерь в резонаторе (три моды на рис. 3 при ). Для того чтобы лазер работал на одной частоте (в одночастотном режиме), необходимо, как правило, принимать специальные меры (например, увеличить потери, как это показано на рисунке 3) или изменить расстояние между зеркалами так, чтобы и в контур усиления попадала только одна мода. Поскольку в оптике, как отмечено выше, и частота генерации в лазере определяется в основном частотой резонатора, то, чтобы держать стабильной частоту генерации, необходимо стабилизировать резонатор.
Итак, если коэффициент усиления в рабочем веществе перекрывает потери в резонаторе для определенных типов колебаний, на них возникает генерация. Затравкой для ее возникновения являются, как и в любом генераторе, шумы, представляющие в лазерах спонтанное излучение.

Режимы работы лазеров

Если в процессе работы лазера параметры резонатора (потери и связанная с ними добротность) остаются неизменными, лазер работает в так называемом "режиме свободных колебаний". Очевидно, что в этом случае при стационарной накачке лазер будет работать в непрерывном режиме, при импульсной накачке - в импульсном.
Достоинством непрерывного режима является то, что в этом режиме наиболее полно реализуются такие свойства лазеров, как монохроматичность, когерентность, направленность и низкий уровень шумов излучения.
В импульсном режиме в активную среду может быть введена значительно более высокая мощность накачки и соответственно получены большие мощности генерации. Кроме того, в импульсном режиме за счет переходных процессов может быть получена инверсия и генерация на таких переходах, где в стационарном режиме инверсия достигнута быть не может.
Отметим, что импульсный режим генерации может быть осуществлен и за счет управления параметрами резонатора [Карлов Н.В., 1988, Тарасов Л.В., 1981]. Ниже рассмотрены два примера, иллюстрирующие это.

Режим модулированной добротности (режим генерации гигантских импульсов)

Допустим, что накачка осуществляется при низкой добротности резонатора (высоких потерях), так что генерация возникнуть не может. Тогда может быть достигнута максимальная для данной скорости накачки F 2 разность населенностей и в единице объема вещества запасена энергия . Отметим, что при стационарном резонаторе с низкими потерями это значение достигнуто быть не может, поскольку по достижении порога и возникновении генерации инверсия больше не растет, так как накачка, превышающая пороговую, уходит в лазерное излучение.
Если эту запасенную энергию высветить в импульсе длительностью , то получается удельная мощность поскольку есть максимальная (с единицы объема) мощность в непрерывном режиме. При можно получить существенный выигрыш в мощности.
Режим модулированной добротности осуществляется следующим образом: по достижении максимальной инверсии добротность резонатора быстро увеличивается, потери уменьшаются и начинает развиваться генерация, проходя сперва линейный этап развития из спонтанного излучения, а затем быстрый нелинейный этап, за время которого запасенная в рабочем веществе энергия выплескивается в виде короткого (на практике до 3-10 нс) и мощного импульса. Типичные значения достигаемых мощностей соответствуют 107 - 108 Вт, рекордные - 1013-1015 Вт. Например, для рубинового лазера, дающего в режиме свободных колебаний Р = 103 Вт при , в режиме модулированной добротности P = 108 Вт, то есть возрастает на 5 порядков.
Быстрое включение добротности (изменение потерь от высоких к низким) можно осуществить различными способами: механическим, вращая одно из зеркал, или электооптическим, помещая в резонатор ячейку Керра, работу которой как затвора можно обеспечить подачей на нее напряжения.



Поделиться:


Последнее изменение этой страницы: 2016-08-01; просмотров: 209; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.220.137.164 (0.007 с.)