Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Синхронный и асинхронный ввод/вывод

Поиск

Управление вводом/выводом.

Устройства ввода-вывода делятся на два типа: блок-ориентированные устройства и байт-ориентированные устройства. Блок-ориентированные устройства хранят информацию в блоках фиксированного размера, каждый из которых имеет свой собственный адрес. Самое распространенное блок-ориентированное устройство - диск. Байт-ориентированные устройства не адресуемы и не позволяют производить операцию поиска, они генерируют или потребляют последовательность байтов. Примерами являются терминалы, строчные принтеры, сетевые адаптеры. Электронный компонент называется контроллером устройства или адаптером. Операционная система имеет дело с контроллером. Контроллер выполняет простые функции, осуществляет контроль и исправляет ошибки. Каждый контроллер имеет несколько регистров, которые используются для взаимодействия с центральным процессором. ОС выполняет ввод-вывод, записывая команды в регистры контроллера. Контроллер гибкого диска IBM PC принимает 15 команд, таких как READ, WRITE, SEEK, FORMAT и т.д. Когда команда принята, процессор оставляет контроллер и занимается другой работой. При завершении команды контроллер организует прерывание для того, чтобы передать управление процессором операционной системе, которая должна проверить результаты операции. Процессор получает результаты и статус устройства, читая информацию из регистров контроллера.

Основная идея организации программного обеспечения ввода-вывода состоит в разбиении его на несколько уровней, причем нижние уровни обеспечивают экранирование особенностей аппаратуры от верхних, а те, обеспечивают удобный интерфейс для пользователей.

Ключевым принципом является независимость от устройств. Вид программы не должен зависеть от того, читает ли она данные с гибкого диска или с жесткого диска. Другим важным вопросом для программного обеспечения ввода-вывода является обработка ошибок. Вообще говоря, ошибки следует обрабатывать как можно ближе к аппаратуре. Если контроллер обнаруживает ошибку чтения, то он должен попытаться ее скорректировать. Если же это ему не удается, то исправлением ошибок должен заняться драйвер устройства. И только если нижний уровень не может справиться с ошибкой, он сообщает об ошибке верхнему уровню.

Еще один ключевой вопрос - это использование блокирующих (синхронных) и неблокирующих (асинхронных) передач. Большинство операций физического ввода-вывода выполняется асинхронно - процессор начинает передачу и переходит на другую работу, пока не наступает прерывание. Необходимо, чтобы операции ввода-вывода были блокирующие - после команды READ программа автоматически приостанавливается до тех пор, пока данные не попадут в буфер программы.

Последняя проблема состоит в том, что одни устройства являются разделяемыми(диски: одновременный доступ нескольких пользователей к диску не представляет собой проблему), а другие - выделенными(принтеры: нельзя смешивать строчки, печатаемые различными пользователями).

Для решения поставленных проблем целесообразно разделить программное обеспечение ввода-вывода на четыре слоя (рисунок 2.30):

· Обработка прерываний,

· Драйверы устройств,

· Независимый от устройств слой операционной системы,

· Пользовательский слой программного обеспечения.

Понятие аппаратного прерывания и его обработка.

Асинхронные или внешние (аппаратные) прерывания — события, которые исходят от внешних источников (например, периферийных устройств) и могут произойти в любой произвольный момент: сигнал от таймера, сетевой карты или дискового накопителя, нажатие клавиш клавиатуры, движение мыши; Они требуют моментальной реакции (обработки).

Практически все системы ввода/вывода в компьютере работают с использованием прерываний. В частности, когда вы нажимаете клавиши или щелкаете мышью, аппаратура вырабатывает прерывания. В ответ на них система, соответственно, считывает код нажатой клавиши или запоминает координаты курсора мыши. Прерывания вырабатываются контроллером диска, адаптером локальной сети, портами последовательной передачи данных, звуковым адаптером и другими устройствами.

Кажется очевидным, что возможны самые разнообразные прерывания по самым различным причинам. Поэтому с прерыванием связывают число - так называемый номер прерывания.

Этот номер однозначно соответствует тому или иному событию. Система умеет распознавать прерывания и при их возникновении запускает процедуру, соответствующую номеру прерывания.

Некоторые прерывания (первые пять по порядку номеров) зарезервированы для использования центральным процессором на случай каких-либо особых событий вроде попытки деления на нуль, переполнения и т. п. (это правда внутренние прерывания J).

Аппаратные прерывания всегда происходят асинхронно по отношению к выполняющимся программам. Кроме того, может возникнуть одновременно сразу несколько прерываний!

Для того чтобы система "не растерялась", решая какое прерывание обслуживать в первую очередь, существует специальная схема приоритетов. Каждому прерыванию назначается свой приоритет. Если происходит одновременно несколько прерываний, система отдает предпочтение самому высокоприоритетному, откладывая на время обработку остальных прерываний.

Система приоритетов реализована на двух микросхемах Intel 8259 (или аналогичных). Каждая микросхема является контроллером прерывания и обслуживает до восьми приоритетов. Микросхемы можно объединять (каскадировать) для увеличения количества уровней приоритетов в системе.

Уровни приоритетов обозначаются сокращенно IRQ0 - IRQ15.


24. Управление вводом/выводом. Синхронный и асинхронный ввод/вывод.

Одной из главных функций ОС является управление всеми устройствами ввода-вывода компьютера. ОС должна передавать устройствам команды, перехватывать прерывания и обрабатывать ошибки; она также должна обеспечивать интерфейс между устройствами и остальной частью системы. В целях развития интерфейс должен быть одинаковым для всех типов устройств (независимость от устройств). Подробнее про управление в/в вопрос 23.

Принципы защиты

Поскольку ОС UNIX с самого своего зарождения задумывалась как многопользовательская операционная система, в ней всегда была актуальна проблема авторизации доступа различных пользователей к файлам файловой системы. Под авторизацией доступа мы понимаем действия системы, которые допускают или не допускают доступ данного пользователя к данному файлу в зависимости от прав доступа пользователя и ограничений доступа, установленных для файла. Схема авторизации доступа, примененная в ОС UNIX, настолько проста и удобна и одновременно настолько мощна, что стала фактическим стандартом современных операционных систем (не претендующих на качества систем с многоуровневой защитой).

Защита файлов

Как принято в многопользовательской операционной системе, в UNIX поддерживается единообразный механизм контроля доступа к файлам и справочникам файловой системы. Любой процесс может получить доступ к некоторому файлу в том и только в том случае, если права доступа, описанные при файле, соответствуют возможностям данного процесса.

Защита файлов от несанкционированного доступа в ОС UNIX основывается на трех фактах. Во-первых, с любым процессом, создающим файл (или справочник), ассоциирован некоторый уникальный в системе идентификатор пользователя (UID - User Identifier), который в дальнейшем можно трактовать как идентификатор владельца вновь созданного файла. Во-вторых, с каждый процессом, пытающимся получить некоторый доступ к файлу, связана пара идентификаторов - текущие идентификаторы пользователя и его группы. В-третьих, каждому файлу однозначно соответствует его описатель - i-узел.

На последнем факте стоит остановиться более подробно. Важно понимать, что имена файлов и файлы как таковые - это не одно и то же. В частности, при наличии нескольких жестких связей с одним файлом несколько имен файла реально представляют один и тот же файл и ассоциированы с одним и тем же i-узлом. Любому используемому в файловой системе i-узлу всегда однозначно соответствует один и только один файл. I-узел содержит достаточно много разнообразной информации (большая ее часть доступна пользователям через системные вызовы stat и fstat), и среди этой информации находится часть, позволяющая файловой системе оценить правомощность доступа данного процесса к данному файлу в требуемом режиме.

Общие принципы защиты одинаковы для всех существующих вариантов системы: Информация i-узла включает UID и GID текущего владельца файла (немедленно после создания файла идентификаторы его текущего владельца устанавливаются соответствующими действующим идентификатором процесса-создателя, но в дальнейшем могут быть изменены системными вызовами chown и chgrp). Кроме того, в i-узле файла хранится шкала, в которой отмечено, что может делать с файлом пользователь - его владелец, что могут делать с файлом пользователи, входящие в ту же группу пользователей, что и владелец, и что могут делать с файлом остальные пользователи. Мелкие детали реализации в разных вариантах системы различаются.

28. Управление доступом к файлам в ОС Windows NT. Списки прав доступа.

Система управления доступом в ОС Windows NT отличается высокой степенью гибкости, которая достигается за счет большого разнообразия субъектов и объектов доступа, а также детализации операций доступа.

Контроль доступа к файлам

Для разделяемых ресурсов в Windows NT применяется общая модель объекта, который содержит такие характеристики безопасности, как набор допустимых операций, идентификатор владельца, список управления доступом.

Объекты в Windows NT создаются для любых ресурсов в том случае, когда они являются или становятся разделяемыми — файлов, каталогов, устройств, секций памяти, процессов. Характеристики объектов в Windows NT делятся на две части — общую часть, состав которой не зависит от типа объекта, и индивидуальную, определяемую типом объекта.
Все объекты хранятся в древовидных иерархических структурах, элементами которых являются объекты-ветви (каталоги) и объекты-листья (файлы). Для объектов файловой системы такая схема отношений является прямым отражением иерархии каталогов и файлов. Для объектов других типов иерархическая схема отношений имеет свое содержание, например, для процессов она отражает связи родитель-потомок, а для устройств отражает принадлежность к определенному типу устройств и связи устройства с другими устройствами, например SCSI-контроллера с дисками.

Проверка прав доступа для объектов любого типа выполняется централизованно с помощью монитора безопасности (Security Reference Monitor), работающего в привилегированном режиме.

Для системы безопасности Windows NT характерно наличие большого количества различных предопределенных (встроенных) субъектов доступа — как отдельных пользователей, так и групп. Так, в системе всегда имеются такие пользователи, как Adininistrator, System и Guest, а также группы Users, Adiniiiistrators, Account Operators, Server Operators, Everyone и другие. Смысл этих встроенных пользователей и групп состоит в том, что они наделены некоторыми правами, облегчая администратору работу по созданию эффективной системы разграничения доступа. При добавлении нового пользователя администратору остается только решить, к какой группе или группам отнести этого пользователя. Конечно, администратор может создавать новые группы, а также добавлять права к встроенным группам для реализации собственной политики безопасности, но во многих случаях встроенных групп оказывается вполне достаточно.

Windows NT поддерживает три класса операций доступа, которые отличаются типом субъектов и объектов, участвующих в этих операциях.

□ Разрешения (permissions) — это множество операций, которые могут быть определены для субъектов всех типов по отношению к объектам любого типа: файлам, каталогам, принтерам, секциям памяти и т. д. Разрешения по своему назначению соответствуют правам доступа к файлам и каталогам в QC UNIX.

□ Права (user rights) — определяются для субъектов типа группа на выполнение некоторых системных операций: установку системного времени, архивирование файлов, выключение компьютера и т. п. В этих операциях участвует особый объект доступа — операционная система в целом.

В основном именно права, а не разрешения отличают одну встроенную группу пользователей от другой. Некоторые права у встроенной группы являются также встроенными — их у данной группы нельзя удалить. Остальные права встроенной группы можно удалять (или добавлять из общего списка прав).

□ Возможности пользователей (user abilities) определяются для отдельных пользователей на выполнение действий, связанных с формированием их операционной среды, например изменение состава главного меню программ, возможность пользоваться пунктом меню Run (выполнить) и т. п. За счет уменьшения набора возможностей (которые по умолчанию доступны пользователю) администратор может заставить пользователя работать с той операционной средой, которую администратор считает наиболее подходящей и ограждающей пользователя от возможных ошибок.

Права и разрешения, данные группе, автоматически предоставляются ее членам, позволяя администратору рассматривать большое количество пользователей как единицу учетной информации и минимизировать свои действия.

 

При входе пользователя в систему для него создается так называемый токен доступа (access token), включающий идентификатор пользователя и идентификаторы всех групп, в которые входит пользователь. В токене также имеются: список управления доступом (ACL) по умолчанию, Который состоит из разрешений и применяется к создаваемым процессом объектам; список прав пользователя на выполнение системных действий.

Все объекты, включая файлы, потоки, события, даже токены доступа, когда они создаются, снабжаются дескриптором безопасности. Дескриптор безопасности содержит список управления доступом — ACL.

Файловый дескриптор — неотрицательное целое число, присваиваемое ОС открытому процессом файлу.

ACL (англ. Access Control List — список контроля доступа, по-английски произносится «экл») — определяет, кто или что может получать доступ к конкретному объекту, и какие именно операции разрешено или запрещено этому субъекту проводить над объектом.

Списки контроля доступа являются основой систем с избирательным управлением доступом. (Wiki)

Владелец объекта, обычно пользователь, который его создал, обладает правом избирательного управления доступом к объекту и может изменять ACL объекта, чтобы позволить или не позволить другим осуществлять доступ к объекту. Встроенный администратор Windows NT в отличие от суперпользователя UNIX, может не иметь некоторых разрешений на доступ к объекту. Для реализации этой возможности идентификаторы администратора и группы администраторов могут входить в ACL, как и идентификаторы рядовых пользователей. Однако администратор все же имеет возможность выполнить любые операции с любыми объектами, так как он всегда может стать владельцем объекта, а затем уже как владелец получить полный набор разрешений. Однако вернуть владение предыдущему владельцу объекта администратор не может, поэтому пользователь всегда может узнать о том, что с его файлом или принтером работал администратор.

При запросе процессом некоторой операции доступа к объекту в Windows NT управление всегда передается монитору безопасности, который сравнивает- иден-тификаторы пользователя и групп пользователей из токена доступа с иденти-фикаторами, хранящимися в элементах ACL объекта. В отличие от UNIX в эле-ментах ACL Windows NT могут существовать как списки разрешенных, так я списки запрещенных для пользователя операций.

В Windows NT однозначно определены правила, по которым вновь создаваемому объекту назначается список ACL. Если вызывающий код во время создания объекта явно задает все права доступа к вновь создаваемому объекту, то система безопасности приписывает этот ACL объекту.

Если же вызывающий код не снабжает объект списком ACL, а объект имеет имя, то применяется принцип наследования разрешений. Система безопасности про-сматривает ACL того каталога объектов, в котором хранится имя нового объекта. Некоторые из входов ACL каталога объектов могут быть помечены как насле-дуемые. Это означает, что они могут быть приписаны новым объектам, создаваемым в этом каталоге.

В том случае, когда процесс не задал явно список ACL для создаваемого объекта и объект-каталог не имеет наследуемых элементов ACL, используется список ACL по умолчанию из токена доступа процесса.


29. Язык программирования Java. Виртуальная машина Java. Технология Java.

Java — объектно-ориентированный язык программирования, разработанный компанией Sun Microsystems. Приложения Java обычно компилируются в специальный байт-код, поэтому они могут работать на любой виртуальной Java-машине (JVM) независимо от компьютерной архитектуры. Программы на Java транслируются в байт-код, выполняемый виртуальной машиной Java (JVM) — программой, обрабатывающей байтовый код и передающей инструкции оборудованию как интерпретатор, но с тем отличием, что байтовый код, в отличие от текста, обрабатывается значительно быстрее.

Достоинство подобного способа выполнения программ — в полной независимости байт-кода от операционной системы и оборудования, что позволяет выполнять Java-приложения на любом устройстве, для которого существует соответствующая виртуальная машина. Другой важной особенностью технологии Java является гибкая система безопасности благодаря тому, что исполнение программы полностью контролируется виртуальной машиной. Любые операции, которые превышают установленные полномочия программы (например, попытка несанкционированного доступа к данным или соединения с другим компьютером) вызывают немедленное прерывание.

Часто к недостаткам концепции виртуальной машины относят то, что исполнение байт-кода виртуальной машиной может снижать производительность программ и алгоритмов, реализованных на языке Java.

Java Virtual Machine (сокращенно Java VM, JVM) — виртуальная машина Java — основная часть исполняющей системы Java, так называемой Java Runtime Environment (JRE). Виртуальная машина Java интерпретирует и исполняет байт-код Java, предварительно созданный из исходного текста Java-программы компилятором Java (javac). JVM может также использоваться для выполнения программ, написанных на других языках программирования. Например, исходный код на языке Ada может быть откомпилирован в байт-код Java, который затем может выполниться с помощью JVM.

JVM является ключевым компонентом платформы Java. Так как виртуальные машины Java доступны для многих аппаратных и программных платформ, Java может рассматриваться и как связующее программное обеспечение, и как самостоятельная платформа, отсюда принцип «написано однажды, запускается везде» (write once, run anywhere). Использование одного байт-кода для многих платформ позволяет описать Java как «скомпилировано однажды, запускается везде» (compile once, run anywhere).

Среда исполнения

Программы, предназначенные для запуска на JVM должны быть скомпилированы в стандартизированном переносимом двоичном формате, который обычно представляется в виде файлов.class. Программа может состоять из множества классов, размещенных в различных файлах. Для облегчения размещения больших программ, часть файлов вида.class могут быть упакованы вместе в так называемый.jar файл (сокращение от Java Archive).

Виртуальная машина JVM исполняет файлы.class или.jar, эмулируя инструкции, написанные для JVM, путем интерпретирования или использования just-in-time компилятора (JIT), такого, как HotSpot от Sun microsystems. В наши дни JIT компиляция используется в большинстве JVM в целях достижения большей скорости.

Как и большинство виртуальных машин, Java Virtual Machine имеет stack-ориентированную архитектуру, свойственную микроконтроллерам и микропроцессорам.

JVM, которая является экземпляром JRE (Java Runtime Environment), вступает в действие при исполнении программ Java. После завершения исполнения, этот экземпляр удаляется сборщиком мусора. JIT является частью виртуальной машины Java, которая используется для ускорения времени выполнения приложений. JIT одновременно компилирует части байт-кода, которые имеют аналогичную функциональность, и, следовательно, уменьшает количество времени, необходимого для компиляции.

j2se (java 2 standard edition) – стандартная библиотека включает в себя:

GUI, NET, Database…


30. Платформа.NET. Основные идеи и положения. Языки программирования.NET.

.NET Framework — программная технология от компании Microsoft, предназначенная для создания обычных программ и веб-приложений.

Одной из основных идей Microsoft.NET является совместимость различных служб, написанных на разных языках. Например, служба, написанная на C++ для Microsoft.NET, может обратиться к методу класса из библиотеки, написанной на Delphi; на C# можно написать класс, наследованный от класса, написанного на Visual Basic.NET, а исключение, созданное методом, написанным на C#, может быть перехвачено и обработано в Delphi. Каждая библиотека (сборка) в.NET имеет сведения о своей версии, что позволяет устранить возможные конфликты между разными версиями сборок.

Приложения также можно разрабатывать в текстовом редакторе и использовать консольный компилятор.

Подобно технологии Java, среда разработки.NET создаёт байт-код, предназначенный для исполнения виртуальной машиной. Входной язык этой машины в.NET называется MSIL (Microsoft Intermediate Language), или CIL (Common Intermediate Language, более поздний вариант), или просто IL.

Применение байт-кода позволяет получить кроссплатформенность на уровне скомпилированного проекта (в терминах.NET: сборка), а не только на уровне исходного текста, как, например, в С. Перед запуском сборки в среде исполнения CLR байт-код преобразуется встроенным в среду JIT-компилятором (just in time, компиляция на лету) в машинные коды целевого процессора. Также существует возможность скомпилировать сборку в родной (native) код для выбранной платформы с помощью поставляемой вместе с.NET Framework утилиты NGen.exe.

В ходе выполнения процедуры трансляции исходный текст программы (написанный на SML, C#, Visual Basic, C++ или любом другом языке программирования, который поддерживается.NET) преобразуется компилятором в так называемую сборку (assembly) и сохраняется в виде файла динамически присоединяемой библиотеки (Dynamically Linked Library, DLL) или исполняемого файла (Executable, EXE).

Естественно, что для каждого компилятора (будь то компилятор языка C#, csc.exe или Visual Basic, vbc.exe) средой времени выполнения производится необходимое отображение используемых типов в типы CTS, а программного кода – в код "абстрактной машины".NET – MSIL (Microsoft Intermediate Language).

В итоге программный проект формируется в виде сборки – самодостаточного компонента для развертывания, тиражирования и повторного использования. Сборка идентифицируется цифровой подписью автора и уникальным номером версии.

Встроенные языки программирования (поставляются вместе с.NET Framework):

C#; J#; VB.NET; JScript.NET; C++/CLI — новая версия C++ (Managed).


31. Функциональные компоненты ОС. Управление файлами

Функциональные компоненты ОС:

Функции операционной системы автономного компьютера обычно группируются либо в соответствии с типами локальных ресурсов, которыми управляет ОС, либо в соответствии со специфическими задачами, применимыми ко всем ресурсам. Иногда такие группы функций называют подсистемами. Наиболее важными подсистемами управления ресурсами являются подсистемы управления процессами, памятью, файлами и внешними устройствами, а подсистемами, общими для всех ресурсов, являются подсистемы пользовательского интерфейса, защиты данных и администрирования.

Управление файлами:

Способность ОС к «экранированию» сложностей реальной аппаратуры очень ярко проявляется в одной из основных подсистем ОС — файловой системе.

Файловая система связывает носитель информации с одной стороны и API (интерфейс прикладного программирования) для доступа к файлам — с другой. Когда прикладная программа обращается к файлу, она не имеет никакого представления о том, каким образом расположена информация в конкретном файле, так же, как и на каком физическом типе носителя (CD, жёстком диске, магнитной ленте или блоке флеш-памяти) он записан. Всё, что знает программа — это имя файла, его размер и атрибуты. Эти данные она получает от драйвера файловой системы. Именно файловая система устанавливает, где и как будет записан файл на физическом носителе (например, жёстком диске).

С точки зрения операционной системы, весь диск представляет собой набор кластеров размером от 512 байт и выше. Драйверы файловой системы организуют кластеры в файлы и каталоги (реально являющиеся файлами, содержащими список файлов в этом каталоге). Эти же драйверы отслеживают, какие из кластеров в настоящее время используются, какие свободны, какие помечены как неисправные.

Однако файловая система не обязательно напрямую связана с физическим носителем информации. Существуют виртуальные файловые системы, а также сетевые файловые системы, которые являются лишь способом доступа к файлам, находящимся на удалённом компьютере.

В простейшем случае все файлы на данном диске хранятся в одном каталоге. Такая одноуровневая схема использовалась в CP/M и в первой версии MS-DOS 1.0. Иерархическая файловая система со вложенными друг в друга каталогами впервые появилась в Multics, затем в UNIX.

Каталоги на разных дисках могут образовывать несколько отдельных деревьев, как в DOS/Windows, или же объединяться в одно дерево, общее для всех дисков, как в UNIX-подобных системах.

На самом деле, в DOS/Windows системах также, как и в UNIX-подобных существует один корневой каталог со вложенными директориями, имеющими названия «c:», «d:» и т. д. В эти каталоги монтируются разделы жёсткого диска. То есть, c:\ — это всего лишь ссылка на file:///c:/. Однако, в отличие от UNIX-подобных файловых систем, в Windows запись в корневой каталог запрещена, как и просмотр его содержимого.

В UNIX существует только один корневой каталог, а все остальные файлы и каталоги вложены в него. Чтобы получить доступ к файлам и каталогам на каком-нибудь диске, необходимо примонтировать этот диск командой mount. Например, чтобы открыть файлы на CD, нужно, говоря простым языком, сказать операционной системе: «возьми файловую систему на этом компакт-диске и покажи её в каталоге /mnt/cdrom». Все файлы и каталоги, находящиеся на CD, появятся в этом каталоге /mnt/cdrom, который называется точкой монтирования (англ. mount point). В большинстве UNIX-подобных систем съёмные диски (дискеты и CD), флеш-накопители и другие внешние устройства хранения данных монтируют в каталог /mnt,/mount или /media. Unix и UNIX-подобные операционные системы также позволяет автоматически монтировать диски при загрузке операционной системы.

Обратите внимание на использование слешей в файловых системах Windows, UNIX и UNIX-подобных операционных системах (В Windows используется обратный слеш «\», а в UNIX и UNIX-подобных операционных системах простой слеш «/»)

Кроме того, следует отметить, что вышеописанная система позволяет монтировать не только файловые системы физических устройств, но и отдельные каталоги (параметр --bind) или, например, образ ISO (опция loop). Такие надстройки, как FUSE, позволяют также монтировать, например, целый каталог на FTP и ещё очень большое количество различных ресурсов.

Ещё более сложная структура применяется в NTFS и HFS. В этих файловых системах каждый файл представляет собой набор атрибутов. Атрибутами считаются не только традиционные только для чтения, системный, но и имя файла, размер и даже содержимое. Таким образом, для NTFS и HFS то, что хранится в файле, — это всего лишь один из его атрибутов.

Если следовать этой логике, один файл может содержать несколько вариантов содержимого. Таким образом, в одном файле можно хранить несколько версий одного документа, а также дополнительные данные (значок файла, связанная с файлом программа). Такая организация типична для HFS на Macintosh.


32. Функциональные компоненты ОС. Управление процессами.

Управление процессами:

Важнейшей частью операционной системы, непосредственно влияющей на функционирование вычислительной машины, является подсистема управления процессами. Процесс (или по-другому, задача) - абстракция, описывающая выполняющуюся программу. Для операционной системы процесс представляет собой единицу работы, заявку на потребление системных ресурсов.

В многозадачной (многопроцессной) системе процесс может находиться в одном из трех основных состояний:

ВЫПОЛНЕНИЕ - активное состояние процесса, во время которого процесс обладает всеми необходимыми ресурсами и непосредственно выполняется процессором;

ОЖИДАНИЕ - пассивное состояние процесса, процесс заблокирован, он не может выполняться по своим внутренним причинам, он ждет осуществления некоторого события, например, завершения операции ввода-вывода, получения сообщения от другого процесса, освобождения какого-либо необходимого ему ресурса;

ГОТОВНОСТЬ - также пассивное состояние процесса, но в этом случае процесс заблокирован в связи с внешними по отношению к нему обстоятельствами: процесс имеет все требуемые для него ресурсы, он готов выполняться, однако процессор занят выполнением другого процесса.

В ходе жизненного цикла каждый процесс переходит из одного состояния в другое в соответствии с алгоритмом планирования процессов, реализуемым в данной операционной системе.

Стандарт CP/M

Начало созданию операционных систем для микроЭВМ положила ОС СР/М. Она была разработана в 1974 году, после чего была установлена на многих 8-разрядных машинах. В рамках этой операционной системы было создано программное обеспечение значительного объема, включающее трансляторы с языков Бейсик, Паскаль, Си, Фортран, Кобол, Лисп, Ада и многих других, текстовые. Они позволяют подготавливать документы гораздо быстрее и удобнее, чем с помощью пишущей машинки.

Стандарт MSX

Этот стандарт определял не только ОС, но и характеристики аппаратных средств для школьных ПЭВМ. Согласно стандарту MSX машина должна была иметь оперативную память объемом не менее 16 К, постоянную память объемом 32 К с встроенным интерпретатором языка Бейсик, цветной графический дисплей с разрешающей способностью 256х192 точек и 16 цветами, трехканальный звуковой генератор на 8 октав, параллельный порт для подключения принтера и контроллер для управления внешним накопителем, подключаемым снаружи.

Операционная система такой машины должна была обладать следующими свойствами: требуемая память - не более 16 К, совместимость с СР/М на уровне системных вызовов, совместимость с DOS по форматам файлов на внешних накопителях на основе гибких магнитных дисков, поддержка трансляторов языков Бейсик, Си, Фортран и Лисп.

Пи - система

В начальный период развития персональных компьютеров была создана операционная система USCD p-system. Основу этой системы составляла так называемая П-машина - программа, эмулирующая гипотетическую универсальную вычислительную машину. П-машина имитирует работу процессора, памяти и внешних устройств, выполняя специальные команды, называемые П-кодом. Программные компоненты Пи-системы (в том числе компиляторы) составлены на П-коде, прикладные программы также компилируются в П-код. Таким образом, главной отличительной чертой системы являлась минимальная зависимость от особенностей аппаратуры ПЭВМ. Именно это обеспечило переносимость Пи-системы на различные типы машин. Компактность П-кода и удобно реализованный механизм подкачки позволял выполнять сравнительно большие программы на ПЭВМ, имеющих небольшую оперативную память.

Управление вводом/выводом.

Устройства ввода-вывода делятся на два типа: блок-ориентированные устройства и байт-ориентированные устройства. Блок-ориентированные устройства хранят информацию в блоках фиксированного размера, каждый из которых имеет свой собственный адрес. Самое распространенное блок-ориентированное устройство - диск. Байт-ориентированные устройства не адресуемы и не позволяют производить операцию поиска, они генерируют или потребляют последовательность байтов. Примерами являются терминалы, строчные принтеры, сетевые адаптеры. Электронный компонент называется контроллером устройства или адаптером. Операционная система имеет дело с контроллером. Контроллер выполняет простые функции, осуществляет контроль и исправляет ошибки. Каждый контроллер имеет несколько регистров, которые используются для взаимодействия с центральным процессором. ОС выполняет ввод-вывод, записывая команды в регистры контроллера. Контроллер гибкого диска IBM PC принимает 15 команд, таких как READ, WRITE, SEEK, FORMAT и т.д. Когда команда принята, процессор оставляет контроллер и занимается другой работой. При завершении команды контроллер организует прерывание для того, чтобы передать управление процессором операционной системе, которая должна проверить результаты операции. Процессор получает результаты и статус устройства, читая информацию из регистров контроллера.

Основная идея организации программного обеспечения ввода-вывода состоит в разбиении его на несколько уровней, причем нижние уровни обеспечивают экранирование особенностей аппаратуры от верхних, а те, обеспечивают удобный интерфейс для пользователей.

Ключевым принципом является независимость от устройств. Вид программы не должен зависеть от того, читает ли она данные с гибкого диска или с жесткого диска. Другим важным вопросом для программного обеспечения ввода-вывода является обработка ошибок. Вообще говоря, ошибки следует обрабатывать как можно ближе к аппаратуре. Если контроллер обнаруживает ошибку чтения, то он должен попытаться ее скорректировать. Если же это ему не удается, то исправлением ошибок должен заняться драйвер устройства. И только если нижний уровень не может справиться с ошибкой, он сообщает об ошибке верхнему уровню.

Еще один ключевой вопрос - это использование блокирующих (синхронных) и неблокирующих (асинхронных) передач. Большинство операций физического ввода-вывода выполняется асинхронно - процессор начинает передачу и переходит на другую работу, пока не наступает прерывание. Необходимо, чтобы операции ввода-вывода были блокирующие - после команды READ программа автоматически приостанавливается до тех пор, пока данные не попадут в буфер программы.

Последняя проблема состоит в том, что одни устройства являются разделяемыми(диски: одновременный доступ нескольких пользователей к диску не представляет собой проблему), а другие - выделенными(принтеры: нельзя смешивать строчки, печатаемые различными пользователями).

Для решения поставленных проблем целесообразно разделить программное обеспечение ввода-вывода на четыре слоя (рисунок 2.30):

· Обработка прерываний,

· Драйверы устройств,

· Независимый от устройств слой операционной системы,

· Пользовательский слой программного обеспечения.

Понятие аппаратного прерывания и его обработка.

Асинхронные или внешние (аппаратные) прерывания — события, которые исходят от внешних источников (например, периферийных устройств) и могут произойти в любой произвольный момент: сигнал от таймера, сетевой карты или дискового накопителя, нажатие клавиш клавиатуры, движение мыши; Они требуют моментальной реакции (обработки).

Практически все системы ввода/вывода в компьютере работают с использованием прерываний. В частности, когда вы нажимаете клавиши или щелкаете мышью, аппаратура вырабатывает прерывания. В ответ на них система, соответственно, считывает код нажатой клавиши или запоминает координаты курсора мыши. Прерывания вырабатываются контроллером диска, адаптером локальной сети, портами последовательной передачи данных, звуковым адаптером и другими устройствами.

Кажется очевидным, что возможны



Поделиться:


Последнее изменение этой страницы: 2016-07-14; просмотров: 877; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.12.147.12 (0.014 с.)