Показатели физических свойств почвы 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Показатели физических свойств почвы



ПОЧВОВЕДЕНИЕ

Почвоведение — наука о почве, ее строении, составе, свойст­ вах и географическом распространении, закономерностях ее про­ исхождения, развития, функционирования и роли в природе, путях и методах ее мелиорации, охраны и рационального исполь­ зования в хозяйственной деятельности человека. Учение о почве как о самостоятельном естественно-истори­ ческом теле природы было создано в конце XIX столетия вели­ ким русским естествоиспытателем Василием Васильевичем Доку­ чаевым (1846—1903) и развито блестящей плеядой его учеников и последователей. Оно сформировалось в начале нашего века в новую отрасль естествознания — современное генетическое почвоведение (генетическое потому, что в его основе лежит учение о генезисе — происхождении, развитии и эволюции — почв).

К середине прошлого века в трудах агрономов, агрогеологов, агрохимиков сложилось определение почвы, отождествляющее ее с пахотным слоем, который служит непосредственным пред­ метом обработки и в котором сосредоточена главная масса корней растений, причем основное внимание обращалось на ве­ щественный состав этого верхнего слоя земной коры (смесь минеральных и органических элементов). Такое субстанцион­ ное определение почвы было распространено вплоть до появле­ ния работ В. В. Докучаева, показавшего его научную несостоя­ тельность и давшего новое определение почвы, совершившее переворот в науке.

В своей последней крупной работе «Лекции о почвоведении» (1901) В.В.Докучаев написал, что почва «есть функция (результат) от материнской породы (грун­ та), климата и организмов, помноженная на время».

Самое главное в докучаевском определении почвы, сыгравшем столь выдающуюся роль в развитии новой науки, — это то, что оно, во-первых, ставит почву в ряд самостоятельных природных тел, качественно отличающихся от всех иных тел природы. Во-вторых, согласно докучаевскому определению, почва — это явление историческое, имеющее свой возраст и историю обра­ зования. Наконец, третье — это подчеркнутое в самом определе­ нии наличие функциональных связей между почвой и всеми другими природными телами и явлениями.

Развивая идеи П. А. Костычева о почве как среде произрас­ тания растений, академик В. Р. Вильямс дал такое определение почвы в своем учебнике почвоведения: «Когда мы говорим о почве, мы разумеем рыхлый поверхностный горизонт суши земного шара, способный производить урожай растений. Поня­ тие о почве и ее плодородии неразделимо. Плодородие — сущест­ венное свойство, качественный признак почвы, независимо от степени его количественного проявления. Понятие о плодородной почве мы противопоставляем понятию о бесплодном камне, или другими словами, понятию о массивной горной породе».

Особое положение почвы определяется тем, что, во-первых, в ее составе участвуют как минеральные, так и органические вещества и, что особенно важно, большая группа специфических органических и органоминеральных соединений — почвенный гумус. Кроме того, неотъемлемую часть почвы — ее живую фазу — составляют живые организмы: корневые системы растений, почвооби

тающие животные разного размера вплоть до одноклеточных Protozoa, огромное разнообразие микроорганизмов. Именно поэтому почва является многофазной системой, включая твердую, жидкую, газообразную и живую фазы в отличие от других природных тел. Даже аналитически невозможно отделить почвенные микроорганизмы от почвенного гумуса, что выражается в их суммарном определении общего содержания органического вещества в почве. Всякая природная почва состоит из последовательно сменяющих друг друга вниз от поверхности слоев генетических горизонтов, образовавшихся в результате изменения исходной горной породы в процессе почвообразования. Вертикальная последовательность горизонтов образует почвенный профиль.

Гранулометрический состав

Твердая фаза почвы состоит из частиц разного размера, которые называются механическими элементами. Как правило, отдельные механические элементы в почве находятся в агрегированном состоянии, в виде структурных отдельностей (педов), и для их определения необходимо разрушить агрегаты механическим или химическим способом. В песчаных и супесчаных почвах агрегаты отсутствуют, и механические элементы находятся в раздельно-частичном состоянии.

Гранулометрический состав почвы характеризуется содержанием механических элементов разного размера, выраженном в % к массе абсолютно сухой почвы. Близкие по размерам механические элементы характеризуются примерно одинаковыми свойствами и поэтому их группируют во фракции. Существует несколько группировок, или классификаций механических элементов как отечественных, так и зарубежных. В России наибольшее распространение получила классификация механических элементов, разработанная А.Н. Сабининым и В.Р. Вильямсом и уточненная впоследствии Н.А. Качинским (табл. 11.1).

Гранулометрический состав почвЧастицы размером более 1 мм называются почвенным скелетом, менее 1 мм — мелкоземом. Сумма частиц мельче 0,001 мм называется илистой фракцией, и при определении гранулометрического состава для практических целей на более мелкие фракции не подразделяется.

Отдельные фракции механических элементов различаются по химическому и минералогическому составу, а также по физико-химическим и физическим свойствам. Наиболее резкие различия наблюдаются между фракцией ила (<0,001 мм) и остальными фракциями.

Фракции песка и пыли состоят в основном из первичных минералов (кварц, полевые шпаты и др.). В илистой фракции преобладают вторичные минералы с примесью органических веществ и сильно измельченных (тонкодисперсных) первичных. Вторичные минералы и гумусовые вещества обусловливают высокую поглотительную способность этой фракции по отношению к катионам, в ней сосредоточен основной запасной фонд элементов питания. У илистых частиц хорошо выражена способность к коагуляции с образованием структурных агрегатов, что существенно улучшает водно-физические свойства почв.

По мере уменьшения размеров фракций повышаются влагоемкость, удельная поверхность, высота капиллярного поднятия, набухание, емкость катионного обмена, снижается водопроницаемость. По этим показателям наиболее резкая граница проходит между фракциями крупной и средней пыли. Фракции крупной пыли обладают такими же свойствами, как фракции песка, поэтому все частицы крупнее 0,01 мм (крупный, средний, мелкий песок и крупная пыль) объединяются в группу физического песка, а частицы мельче 0,01 мм (средняя, мелкая пыль и ил) — в группу физической глины.

Почвенная кислотность

Кислотность почвы[1] — способность почвы проявлять свойства кислот.

 

Наличие ионов водорода (Н-ионов) в почвенном растворе, а также обменных ионов водорода и алюминия в почвенном поглощающем комплексе при неполной нейтрализации придаёт почве кислую реакцию.

 

Для характеристики почвенной кислотности используется ряд показателей:

 

Актуальная кислотность — это pH почвенного раствора (на практике измеряется pH водной вытяжки при соотношении почва:вода = 1:2,5 для минеральных почв и 1:25 для торфяных). При рН 7 реакция почвенного раствора нейтральная, ниже 7 — кислая, выше — щелочная. Подзолистые почвы лесной зоны имеют преимущественно кислую реакцию (рНводн 4,5 — 5,5), подзолы и верховые торфяники — сильнокислую (рНводн 3,5—4,5).

Потенциальная кислотность почвы — кислотность твёрдой части почвы, её выражают в мг-экв на 100 г сухой почвы. Параметры потенциальной кислотности учитывают также влияние катионов ППК, которые могут подкислять почвенный раствор (H+ и Al3+).

Обменная кислотность почвы вызывается обменными катионами водорода и алюминия, которые переходят в раствор из почвенного поглощающего комплекса при взаимодействии с нейтральными солями. В богатых перегноем горизонтах она обусловлена преимущественно Н-ионами, в малогумусных минеральных — Al-ионами. Обменная кислотность подзолистых почв лесной зоны составляет рНКС1 3,5—5, или 0,5 — 6 мг-экв на 100 г сухой почвы, серых и бурых лесных — значительно ниже.

Гидролитическая кислотность — pH вытяжки раствором гидролитически щелочной CH3COONa (позволяет более полно вытеснить H+ из ППК). Определяется Н-ионами, переходящими в раствор при взаимодействии с почвой гидролитически щелочных солей, и включает менее подвижные Н-ионы, не вытесняемые нейтральными солями. В подзолистых почвах гидролитическая кислотность составляет 1—10 мг-экв на 100 г сухой почвы. О величине гидролитической кислотности можно судить также по насыщенности почвы основаниями.

Повышенная кислотность почвы негативно сказывается на росте большинства культурных растений за счёт уменьшения доступности ряда макро- и микроэлементов, и наоборот, увеличения растворимости токсичных соединений марганца, алюминия, железа, бора и др., а также ухудшения физических свойств. Для снижения кислотности прибегают к известкованию[2].

 

Подкисление почвы (недопустим к применению термин-синоним Закисление почвы)[1] — изменение кислотно-основных свойств почвы, вызванное природным почвообразовательным процессом, поступлением загрязняющих веществ, внесением физиологически кислых удобрений и другими видами антропогенного воздействия.

Известкова́ние — метод химической мелиорации кислых почв, заключающийся во внесении в них известковых удобрений: кальцита, доломита, известняка, отходов сахарного производства, гашёной извести и т. д. Эффект известкования основан на замещении в ППК ионов водорода и алюминия на содержащиеся в удобрении кальций или магний. Соли натрия для известкования непригодны, так как в результате ухудшаются физические свойства почвы. Также непригодны кальциевые соли сильных кислот, например гипс, которые напротив приводят к подкислению почвы.

Бонитировка почв

Бонитировка почв (от латинского bonitas - доброкачественность) — сравнительная оценка качества почв, их потенциального плодородия и производительной способности. Бонитет почв - показатель их качества, выраженный в баллах по отношению к почве с наиболее высоким потенциальным плодородием, балл которой принимается, обычно, равным 100%.

Оценку качества почв проводят по их свойствам, коррелирующим с урожайностью сельскохозяйственных культур. Отношение величины урожайности культуры или группы культур, в среднем за ряд лет, к баллу бонитета почвы представляет собой урожайную цену балла бонитета, которая является косвенным показателем уровня интенсивности и культуры земледелия.

Бонитировка почв развивалась вместе с наукой о почве. Научные основы бонитировки почв были разработаны В.В. Докучаевым и Н.М. Сибирцевым, которые в ее основу положили природные свойства почв. В России большое распространение получили региональные методы бонитировки, которые учитывали наряду с общерегиональными свойства почв отдельных регионов, в наибольшей степени коррелирующие с урожайностью сельскохозяйственных культур. При этом В.В. Докучаев указывал, что свойства почв носят зональный характер, и в разных зонах свойства, используемые для оценки, должны быть различными. Поэтому в России большое развитие получили региональные подходы к бонитировке почв. Среди наиболее крупных региональных исследований по оценке плодородия почв следует отметить работы П.П. Адерихина, Н.А. Благовидова, Ф.А. Гаврилюка, С.Н. Тайчинова, Н.Ф. Тюменцева, А.С. Фатьянова, С.А. Шувалова и других авторов.

Н.А. Благовидов разработал бонитировку почв для Ленинградской и прилегающих к ней областей. В качестве критериев оценки почв им предложены следующие показатели свойств почв: содержание гумуса, рНКСl, мощность пахотного слоя, гранулометрический состав, свойства почвообразующих пород (наличие в них или отсутствие карбонатов), свойства подпахотного горизонта. Кроме того при общей оценке земель, помимо качества почв, учитываются мезо- и микрорельеф, водный режим, раздробленность угодий и размер производственных участков пашни, которые оказывают большое влияние на производительную способность почв.

Ф.Я. Гаврилюк для бонитировки почв Ростовской области использовал только два показателя: мощность гумусового горизонта (А+АВ) и запасы гумуса в гумусовом горизонте. При этом вводятся поправки на гранулометрический состав и эродированность почв.

68. содержание, запасы и состав гумуса в почвах

Гумус - это стабильные органические соединения, сохраняющиеся в почве длительное время.

 

Процентное содержание гумуса, мощность гумусированного слоя и состав гумуса – наиболее важные показатели плодородия почв.

 

В естественных условиях гумификация растительных остатков в почве осуществляется не только микробами и дождевыми червями, но и многими другими фитосапрофагами. Они создают мелкозернистость и рыхлость, влияют на физические свойства и структуру, на химические процессы, приводят к смешению химических элементов, их аккумуляции и стабилизации в форме гумусовых веществ, определяющих почвенное плодородие. Чем больше гумуса в почве, тем лучше водный, воздушный и тепловой режимы плодородного слоя, тем лучше питание растений, тем активнее идет образование нитратов и углекислоты, необходимых для фотосинтеза и фиксации атмосферного азота свободноживущими в корнеобитаемом горизонте микроорганизмами. Физико-химическое взаимодействие новообразованных гумусовых кислот с минералами предохраняет их от быстрого вовлечения в биохимический кругооборот и способствует закреплению гумуса в почве.

 

Органические вещества растительных остатков с помощью бактерий и червей превращаются в гумусные кислоты и фульвокислоты. В растительных остатках содержатся и так называемые зольные элементы - различные металлы, кремний и т.д. Гумусные кислоты и фульвокислоты взаимодействуют с металлами и образуют соли - гуматы и фульваты. Гуматы лития, калия, натрия растворимы, легко вымываются водой. Они же представляют наиболее ценную часть гумуса, легко доступную растениям. Гуматы кальция, магния, кремния и тяжелых металлов нерастворимы и составляют ту часть гумуса, которую можно назвать консервами почвенного плодородия. Они накапливались в черноземах весь послеледниковый период. Эти гуматы способны растворяться под влиянием ферментов корневой системы растений, но в количествах, удовлетворяющих только их потребность. Они не подвержены гидролизу, но оказывают большое влияние на создание агрономически ценной, связной, водопрочной и пористой структуры, не подверженной влиянию эрозийных воздействий.

 

Особо следует подчеркнуть, что гуматы тяжелых металлов еще более устойчивы к гидролизу ферментами корневой системы растений и практически не усваиваются ими. Это есть главное экологическое свойство гумуса - связывание тяжелых металлов в почве и предохранение всего живого на Земле от их токсического воздействия, в том числе от тяжелых радионуклидов! Это защитное свойство столь же важно для всего живого, как и защитное свойство озонового слоя вокруг Земли. Чем больше гумуса в почве, тем ярче выражено такое буферное свойство почв: пищевая и кормовая продукция, выращенная на высокогумусных почвах, является экологически чистой.

 

Гумус - это "хлеб для растений". В нем сосредоточено 98% запасов почвенного азота, 60% фосфора, 80% калия и содержатся все другие минеральные элементы питания растений в сбалансированном состоянии по природной технологии. В инертном гумусе пахотного слоя заключено до 87,5% энергии.

 

Наиболее богаты гумусом черноземы, где богатая травянистая растительность и активная деятельность микроорганизмов и дождевых червей способствуют обильному образованию гумусовых веществ, а высокое содержание глинистых минералов обеспечивает их закрепление в почве. Так формировался гумусовый фонд почвы - итоговый результат длительных (десятилетия и столетия) и разнообразных процессов разложения и консервации веществ растительного и микробного происхождения.

 

Запасы гумуса в почвенном покрове земли распределены неравномерно: больше всего его в черноземах луговых степей - от 400 до 700 т/га, меньше - в почвах тундр и пустынь - всего 0,6...0,7 т/га.

 

Гумус не только участвует в снабжении растений азотом, фосфором, калием и другими важными макро- и микроэлементами питания, неоспорима его роль и в других важнейших процессах почвообразования и обеспечения плодородия почв, таких, как предохранение почв от выветривания, создание их гранулярной структуры, снабжение растений необходимой для фотосинтеза углекислотой, биологически активными ростовыми веществами. Поэтому сохранение и преумножение запасов гумуса - одна из первоочередных задач земледельцев.

 

Агрономическая ценность гумуса в значительной степени определяется соотношением содержащихся в нем гуминовых кислот и фульвокислот. При преимущественном синтезе гуминовых кислот в почвах формируется четко выраженный гумусовый горизонт, обладающий высоким плодородием. Такие почвы характеризуются водопрочной, водоемкой структурой и гидрофильностью, богаты органическими формами азота, фосфора и других элементов питания растений.

 

При интенсивном образовании фульватного гумуса почвы легко обедняются щелочными катионами и другими элементами, приобретают кислую реакцию среды, обеструктуриваются. Повышение плодородия этих почв связано с длительным окультуриванием и внесением больших доз биогумуса (до 100 т/га).

 

В гумусе сосредоточено огромное количество энергии. При расчете ее теплотворная способность гумуса для всех типов почв условно принимается равной 4000 калорий на 1 г. Из изученных почв по энергетике гумуса резко выделяется чернозем - 20000 калорий в призме сечением 1 см2 и мощностью до 300 см. Гумус других типов почв характеризуется значительно меньшими запасами энергии - 4000...8000 калорий в том же объеме почвы. Если сравнить содержание энергии на 1 га земли, имеющем запас энергии в призме 4000 малых калорий, то общий ее запас сопоставим с 50000 л бензина, а на черноземах - 250000 л.

 

Огромные запасы аккумулированной в гумусе энергии играют чрезвычайно важную роль в самых разнообразных почвенных процессах. Гумус - основной источник энергии для процессов превращения в почве минеральных соединений, биосинтетических реакций, жизнедеятельности микроорганизмов, роста и формирования растений и т.д. Черноземы, как было отмечено, характеризуются преобладающей аккумуляцией энергии в гумусе (88% суммы энергии в гумусе и растительном веществе), что хорошо согласуется с выдающимся и устойчивым плодородием черноземов.

 

Хорошо изучена важная роль гумусовых веществ как физиологически активных соединений для растений. Высокогумусированные почвы отличаются более высоким содержанием физиологически активных веществ. Гумус активизирует биохимические и физиологические процессы, повышает обмен веществ и общий энергетический уровень процессов в растительном организме, способствует усиленному поступлению в него элементов питания, что сопровождается повышением урожая и улучшением его качества.

 

Еще более существенна роль гумуса в увеличении отдачи при умелом применении химических удобрений, эффективность его при этом увеличивается в 1,5...2 раза. Однако необходимо помнить, что химические удобрения, внесенные в почву, вызывают усиленное разложение гумуса, что приводит к снижению его содержания.

 

Практика современного сельскохозяйственного производства показывает, что повышение содержания гумуса в почвах является одним из основных показателей их окультурирования. При низком уровне гумусовых запасов внесение одних минеральных удобрений не приводит к стабильному повышению плодородия почв. Более того, применение высоких доз минеральных удобрений на бедных органическим веществом почвах часто сопровождается неблагоприятным действием их на почвенную микро- и макрофлору, накоплением в растениях нитратов и других вредных соединений, а во многих случаях и снижением урожая сельскохозяйственных культур.

 

Пути увеличения содержания гумуса в почве

 

Потеря гумуса ухудшает азотное питание растений, приводит к ухудшению структуры почвы, увеличению ее плотности, уменьшению запасов продуктивной влаги, снижению микробиологической активности живой фазы почвы.

 

Эту проблему можно решить, если использовать в качестве органики солому и посевы сидеральных культур.

 

При заделке в почву одной тонны соломы образуется 170...190 кг гумуса. Однако солома разлагается медленно. Для ускорения этого процесса надо вносить минеральный азот 8...10 кг д.в. (20-22 кг мочевины) в расчете на 1 т. соломы.

 

Озимые культуры способны давать до 5 т. соломы на гектаре посева. Для удобства заделки соломы в почву ее надо измельчить при уборке и разбрасывать по полю (вместо копнителя на зерноуборочный комбайн надо навешивать измельчитель соломы). Если комбайны не оборудованы измельчителями, то солому кладут в валки, а потом измельчают косилками измельчителя (Е-280, 281, КИР-1,5 и др.).

 

Измельченную солому надо заделывать на глубину 10...12 см с помощью дисковых рабочих органов (тяжелые бороны БДТ-2,2, лущильники ЛД-5(10), что ускорит ее минерализацию и предотвратит накопление фенольных соединений в почве, а затем через две недели запахивать на полную глубину пахотного горизонта. Это мероприятие способно обеспечить ежегодное увеличение гумуса в почве на 700 кг/га.

 

Другим источником поступления органического вещества, а следовательно и гумуса, должен быть сидерат.

 

Сидерация - это выращивание зеленых растений с целью запашки их в почву на зеленое удобрение.

 

Сидераты, как правило, выращивают в паровом поле севооборота. Основной культурой для этих целей является люпин, но могут быть и другие, в первую очередь бобовые культуры.

 

Бобовые культуры кроме того, что образуют большую вегетативную массу, способны брать азот из воздуха и фиксировать его в почве. Запашка люпина в паровом поле (занятой пар) равноценна внесению 70 т. навоза на 1 га пашни. Действие сидерального пара проявляется и на последующие культуры. Общий урожай четырехпольного севооборота повышается на 45% по сравнению с таким же севооборотом, но с чистым неудобренным паром.

 

На зеленое удобрение люпин (яровой) высевают в занятых парах. Под посев поле пашут осенью; перед вспашкой можно внести фосфорно-калийные удобрения из расчета 45 кг д.в. Р2О5 и 60 кг д.в. К2О на 1 га. Для улучшения азотофиксации семена перед посевом следует обработать нитрагином. Глубина заделки семян на суглинистых почвах 2-3 см, на супесчаных - больше. Для предотвращения травмирования семян высевающий аппарат настраивают на верхний высев. Заделывают зеленые растения в почву в стадии цветения (при созревании семена осыпаются). Вегетативная масса может быть 25...30 т/га, поэтому для заделки ее в почву целесообразно использовать сначала тяжелые дисковые бороны типа БДТ-2,2 в двух взаимоперекрестных направлениях, а потом уже запахивать на полную глубину плугами.

 

Для этих целей можно использовать многолетний люпин. На третий год жизни он способен образовать до 60 т/га зеленой массы. На зеленое удобрение его подсевают к яровым культурам (ячмень, овес), замыкающим севооборот (как клевер). После уборки покровной культуры (ячмень, овес) люпин остается на поле в фазе розетки листьев, с весны начинает энергично расти и во время цветения его также, как и яровой, запахивают в почву.

 

В качестве сидеральных культур могут использоваться сераделла, клевер, донник, горчица белая, гречиха, рожь.

 

Совместное использование этих приемов в земледельческой практике способно обеспечить положительный баланс гумуса (увеличение его запасов) в почве - повышать запас питательных веществ, снижать кислотность, улучшать агрофизическое состояние почвы без внесения больших доз органических и минеральных удобрений. Создание естественного плодородия выше исходного уровня есть расширенное воспроизводство.

 

ГЛАВНАЯНОВОСТИПОИСККОНТАКТЫ

ВИДЫ ПАРОВ

ПОЧВООБРАЗОВАНИЕ

ВОДНЫЕ СВОЙСТВА ПОЧВ И ГРУНТОВ

БИОЛОГИЗАЦИЯ ЗЕМЛЕДЕЛИЯ

РИСОВЫЕ СЕВООБОРОТЫ

МИКРОБИОЛОГИЯ ПОЧВ

ОРГАНИЧЕСКОЕ ВЕЩЕСТВО

МИГРАЦИИ ВЕЩЕСТВ

СОСТАВ ЖИДКОЙ ФАЗЫ

СОЗДАНИЕ СЕЯНЫХ ЛУГОВ

ПОЧВОВЕДЕНИЕ

ТОРФЯНЫЕ ПОЧВЫ И ИХ ПЛОДОРОДИЕ

ПОЧВЕННАЯ СЪЕМКА

ПОДЗОЛО - И ГЛЕЕОБРАЗОВАНИЕ

ПОЧВА И МИКРООРГАНИЗМЫ

ЗАБОЛАЧИВАНИЕ И ЭВОЛЮЦИЯ ПОЧВ

ТЕОРИИ И МЕТОДЫ ФИЗИКИ ПОЧВ

Поиск

 

 

Поиск

Новости

03.06.2016

 

Зернодробилка — это верный помощник предприятий, занятых производством корма для птиц и животных. Оборудование...

 

 

03.06.2016

 

В д. Поги Тосненского района открыта новая молочная ферма на сорок пять голов КРС крестьянского фермерского хозяйства...

 

 

03.06.2016

 

Чтобы растительность в вашем саду процветала и давала хорошие сборы, необходимо следить за уровнем pH поливочной воды...

 

 

03.06.2016

 

Измерить показатели pH на данный момент времени не сложно, ведь существует специальный прибор, называемый научными...

 

 

31.05.2016

 

Инновационное предприятие, специализирующееся на выпуске премиксов запустила двадцать седьмого мая на территории особой...

 

 

Содержание и состав гумуса в почвах

28.10.2015

Содержание гумусовых веществ в почвах является характерным генетическим и классификационным признаком для каждого из известных типов почв. Изменение содержания перегноя в почвах происходит крайне медленно, являясь результатом не временных обстоятельств, а сложной и длительной предшествующей истории почвообразовательного процесса и взаимодействия почвы с внешней средой. Для каждого почвенного типа установлено определенное стабильное содержание гумуса в верхних горизонтах почвы и устойчивый тип распределения его запасов по профилю. Каждый тип почв вместе с тем характеризуется определенным качественным составом гумуса: соотношением гуминовых кислот и фульвокислот, строением их молекул и формами их органо-минеральных соединений (табл. 53).

Для черноземных почв типично содержание гумуса в количестве 8—10% в верхнем горизонте и медленное, постепенное уменьшение в нижних горизонтах. Мощность гумусовых горизонтов в черноземных почвах составляет не менее 1—1,5 м, а в черноземах Украины и Кубани достигает иногда 2 м и больше.

Почвы пустынных степей — сероземы — содержат, ничтожное количество гумуса — 1—2%, резко уменьшаясь при переходе от верхних горизонтов почвы к нижним, при этом мощность гумусовых горизонтов в них не превышает 30—40 см. А в такырах — типичных почвах глинистых пустынь — гумус содержится лишь в верхнем корковом микрогоризонте в количестве 0,5—1%. Органическое вещество почв пустыни и полупустыни и по химическому составу резко отличается от органического вещества черноземов. Если в составе гумуса черноземных почв преобладают гумины и соединения гуминовой кислоты, то в сероземных и такырных почвах заметная роль принадлежит соединению фульвокислот. Соответственно и окраска гумусовых горизонтов почв пустыни отличается от окраски черноземов.

В дерново-подзолистых и подзолистых почвах, расположенных к северу от черноземов, содержание гумуса и мощность гумусовых горизонтов также резко уменьшаются. Верхние горизонты дерново-подзолистых и подзолистых почв содержат от 1 до 5% гумуса, нижележащие горизонты, затронутые подзолообразовательным процессом, содержат лишь десятые доли процента гумуса и отличаются вследствие этого белесой светло-серой окраской. Органические вещества здесь представлены соединениями фульвокислот, характеризующимися высокой подвижностью.

Значительно содержание гумуса в дерново-луговых, пойменных и дельтовых почвах (до 12—14%), а также в горно-луговых почвах, где оно иногда достигает 15—25%. Однако мощность гумусовых горизонтов дерново-луговых и горно-луговых почв обычно невелика.

В географическом распределении гумусовых веществ в почвах устанавливается определенная закономерность (рис. 60). Максимальной величины накопление гумуса достигает в типичных мощных черноземах. Здесь складываются наиболее благоприятные гидротермические и биохимические условия, обеспечивающие высокую продукцию свежего органического вещества, умеренную активность микроорганизмов, консервацию и сохранение гумуса в почвах.

К югу и северу от черноземной зоны сочетание гидротермических и биохимических условий неблагоприятно как для синтеза перегноя, так и для его накопления и сохранения. В полупустынных и пустынных зонах годовая продукция растительной массы никогда не достигает больших величин. Вместе с тем органическое вещество здесь быстро минерализуется. К северу от черноземной зоны отмечается преимущественное накопление фульвокислот, отличающихся большой подвижностью и не аккумулирующихся в почвах. В северных зонах России при высокой кислотности и заболоченности почв происходит накопление полуразложившегося и неразложившегося органического вещества в виде торфа.

М.М. Кононова показала, что природа гумуса различных типов почв глубоко различна. Основываясь на содержании гумуса в верхнем горизонте, на отношении Сгк:СфК, на количестве подвижных гумусовых кислот и их оптической плотности2 (E4:E5), М.М. Кононова различает три типа гумуса (см. табл. 53).

Первый тип отличается резким преобладанием фульвокислот (Сгк:СфК колеблется в пределах 0,5-0,8), почти стопроцентной подвижностью гумусовых кислот и большой величиной их цветового коэффициента (E4:Е6 = 4,5; 5,5). Последнее свидетельствует о слабой конденсированности ароматического ядра и близости к фульвокислотам. Высокие гидрофильность и дисперсность гумусовых кислот обусловливают склонность к образованию внутрикомплексных соединений с поливалентными катионами и способность передвижения внутри почвенного профиля в водных растворах. Агрессивность и мобильность гумуса первого типа способствует развитию процессов элювиирования, подзолообразования, фераллитизации, аллитизации.

Второй тип гумуса, гумус черноземов, темных луговых и темно-каштановых почв, характеризуется превалированием гумусовых кислот (отношение Cгк:Сфк=1,5—2,5). Подвижные формы гумусовых кислот составляют 10—20% общего содержания. Гумусовым кислотам второго типа гумуса свойственны низкие значения цветового коэффициента (3,5—4). В молекулах гумусовых кислот этого типа ароматические структуры преобладают над алифатическими, что обусловливает их гидрофоб-ность, низкий порог коагуляции и неспособность к образованию внутрикомплексных соединений с железом, алюминием и другими катионами. Все это обусловливает инертность гумуса второго типа.

Третий тип гумуса (гумус бурых полупустынных почв), подобно первому типу, имеет фульвокислотный состав (Сгк:СфК колеблется в пределах 0,5—0,7), образование гуминовых кислот заторможено; оптическая плотность гуминовых кислот низкая (E4:E6 около 4,5); в отличие от первого типа гумуса в составе третьего типа гумуса гумусовые кислоты бурых полупустынных почв почти нацело (90%) соединены с минеральной частью почвы. Образование гумуса сопровождается почти полной нейтрализацией гумусовых кислот, прежде всего кальцием и магнием, которые присутствуют в этих почвах в большом количестве. Видимо, этим можно объяснить слабое воздействие гумусовых кислот на минеральную часть почвы. Гумус серых лесных почв занимает промежуточное положение между гумусом первого и второго типов, гумус светло-каштановых почв — между гумусом второго и третьего типов.

В зарубежной литературе широко применяется характеристика гумуса по морфологии. Она непременно дается при описании других морфологических свойств и учитывается при определении названия почв, их генетической принадлежности. При этом используются термины „мор“, „модер“ и „мюль“, впервые предложенные Мюллером для характеристики типа подстилки. В настоящее время их применяют при определении типа органического вещества подстилки и перегнойно-аккумулятивного горизонта. Классификацию типов гумуса по морфологии и характерным признакам предложил Дюшофур. В зависимости от условий образования гумус делят на две категории — образовавшийся в условиях аэробиозиса и в условиях анаэробиозиса.

В хорошо дренируемых почвах различают четыре типа гумуса.

Кальциевый мюль — гумус черноземов, каштановых, перегнойно-карбонатных и ряда других почв, сформировавшихся под травянистой растительностью на породах, обогащенных известью. Мюль — «сладкий» гумус — хорошо гумифицированное органическое вещество, образовавшееся в условиях повышенной биологической активности при трансформации растительных остатков беспозвоночными животными и бактериями. Для него характерна нейтральная реакция, С:N=10, полное включение органической массы в минеральный профиль, образование устойчивых органо-минеральных комплексов.

Лесной мюль — гумус лиственных лесов и пахотных почв после сведения лиственных лесов. По морфологии лесной мюль не отличается от кальциевого, но имеет меньшую степень насыщенности, pH около 5,5, отличается преобладанием бурых гуминовых кислот, отношением С:N от 10 до 20.

Модер — переходный тип гумуса от мюля к мору — гумус дерново-подзолистых, лёссивированных, горно-луговых и пахотных почв после сведения смешанных лесов. Модер включает в себя подстилку мощностью 2—3 см и перегнойно-аккумулятивный горизонт. Степень гумификации средняя, преобладают бурые гуминовые кислоты. В трансформации растительных остатков участвуют антроподы и ацидофильные грибы,, биологическая активность разложения растительных остатков средняя. Отношение C:N порядка 15—25. Органо-минеральные комплексы непрочные, контакт с минеральной частью почв неполный.

Mop — гумус почв хвойных лесов и вересковых зарослей. Mop — грубый кислый гумус — формируется в условиях низкой биологической активности, где заторможены процессы минерализации органического вещества. В трансформации растительных остатков принимают преимущественное участие ацидофильные грибы, при очень низкой активности беспозвоночных животных. В этих условиях накапливается мощная подстилка, в которой отчетливо выделяются три подгоризонта:

A0L — растительные остатки, сохранившие свою морфологию;

A0F — полуразложившиеся растительные остатки, переплетенные гифами грибов;

A0H — аморфное органическое вещество, почти не связанное с минеральной частью почвы.

Величина С: N для гумуса типа мор всегда больше 20, часто 30—40. Контакт с минеральной частью почвы очень слабый.

Для почв, формирующихся в анаэробных условиях, Дюшофур выделяет три типа гумуса: кальциевый торф, кислый торф и анмоор. Первые два типа фактически аналогичны торфяным горизонтам почв низинных и верховых болот. Термин „анмоор“ введен Кубиеной для характеристики органического вещества почв переменного увлажнения, оглеенных и глеевых почв. В формировании антмоора принимают участие водная фауна в период насыщения водой и аэробная в период аэробиозиса. Относительно высокой биологической активностью объясняется хорошее перемешивание органических и минеральных веществ. Степень гумификации слабая — гумифицировано меньше 30% органического вещества. Величина С:N больше 20. В то же время контакт гумифицированных веществ с минеральной частью почвы достаточно тесный. Типы гумуса в свою очередь подразделяются на ряд подтипов.

На основе приведенной классификации типов гумуса возможна расшифровка микроформ органического вещества в шлифах почв.

Морфолоия



Поделиться:


Последнее изменение этой страницы: 2016-07-11; просмотров: 532; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.141.244.201 (0.11 с.)