Виды соединений, взаимодействие с компьютерной сетью 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Виды соединений, взаимодействие с компьютерной сетью



IP – телефония

 

Реферат по дисциплине

«Современные сетевые технологии»

 

Выполнила студентка Макарова Л. А.

Группа УИТС-01

Руководитель проф. Лазарев В.А.

 

Самара 2011.

 


 

Содержание

Введение. 4

1. Общие вопросы технологии IP-телефонии. 6

1.1. Терминология. 6

1.2. Особенности IP-телефонии. 6

1.3. Принципы пакетной передачи. 7

1.4. Виды соединений, взаимодействие с компьютерной сетью.. 9

2. Использование протоколов Интернета в IP-телефонии. 15

2.1. Адресация в IP-сетях. 15

3. Передача речи по IP-сети. 18

3.1. Взаимодействие протоколов VoIP. 18

3.2. Качество передачи речевой информации по IP-сети. 19

4. Информационная безопасность в IP-сетях телефонии. 20

5. Мобильность IP-телефонии. 21

5.1. Разновидности мобильности. 21

5.2. Идентификация терминала и пользователя. 21

5.3. Сценарии мобильности в сетях IP-телефонии. 22

6. Особенности учета и биллинга IP-услуг. 24

 


 

Введение

Концепция передачи голоса по сети с помощью персонального компьютера сформировалась в Университете штата Иллинойс (США). В 1993 г. Чарли Кляйн опубликовал Maven - первую программу для передачи голоса по сети с помощью PC. Примерно в то же время одним из самых популярных мультимедийных приложений в сети стала CU-SeeMe, программа видеоконференций для Macintosh (Mac), разработанная в Корнельском университете.

Апрель 1994 г. Во время полета челнока Endeavor NASA передало на Землю его изображение с помощью программы CU-SeeMe. Полученный со спутника сигнал поступал на Maven, соединенную с Интернетом, и любой желающий мог услышать голоса астронавтов. Потом одну программу встроили в другую, и появился вариант CU-SeeMe с полными функциями аудио и видео как для Mac, так и для PC.

Февраль 1995 г. Израильская компания VocalTec предложила первую версию программы Internet Phone для владельцев мультимедийных PC, работающих под Windows. Это стало важной вехой в развитии интернет-телефонии. VocalTec надеялась использовать популярные в то время текстовые каналы Internet Relay Chat (IRC) в качестве двустороннего средства общения между людьми, имеющими сходные интересы. Но компании не удалось договориться с Eris Free Network (EFNet), курирующей IRC, поэтому доступ к этим общественным каналам для Internet Phone был закрыт. Через некоторое время была создана частная сеть серверов Internet Phone, и уже тысячи людей загрузили эту программу с домашней страницы VocalTec, - так начиналась практика регулярного общения.

В том же 1995 г. другие компании очень быстро оценили перспективы, которые открывала возможность разговаривать, находясь в разных полушариях и не платя при этом за международные звонки.

В сентябре того же года в розничной продаже появилась первая из таких программ - DigiPhone, которая предложила "дуплексные" возможности, позволяя говорить и слушать одновременно. В этот момент и родилась привлекательная для абонентов настоящая интерактивная связь.

В марте 1996 г. произошло еще одно знаменательное событие. Тогда было объявлено о совместном проекте под названием "Internet Telephone Gateway" двух компаний: уже известной нам VocalTec и крупнейшего производителя программного обеспечения для компьютерной телефонии Dialogic. Его целью было научить работать через Интернет обычный телефонный аппарат, для чего между Сетью и ТфОП устанавливался специализированный шлюз. Последний получил название VTG (VocalTec Telephone Gateway) и представлял собой специализированную программу, которая использовала голосовые платы Dialogic как интерфейс с обычными телефонными линиями. Специально разработанные многоканальные голосовые платы, во-первых, позволяли одной системе VTG поддерживать до восьми независимых телефонных разговоров через Сеть, а во-вторых, убрали проблему адресации, взяв на себя преобразование обычных телефонных номеров в IP-адреса (и обратно). Для разговора одного пользователя в том продукте достаточно было ширины полосы канала порядка 11 кбит/с. Вот так возможность высокого уплотнения канала и малая стоимость связи создали предпосылки для коренных изменений телекоммуникационного мира.

Еще через год стали вполне привычными соединения через Интернет двух обычных телефонных абонентов, находящихся в совершенно разных местах планеты.

Всего за несколько лет технологии IP-телефонии значительно эволюционировали, и распространенные сегодня решения существенно отличаются от прежних. С одной стороны, это обусловлено развитием аппаратных решений, в частности появлением мощных магистральных и транзитных маршрутизаторов и высокоскоростных телекоммуникационных каналов. С другой стороны, нельзя не отметить и появления таких качественно новых технологий, как динамическая маршрутизация с учетом качества обслуживания в мультисервисных IP-сетях и резервирование ресурсов для контроля качества обслуживания транзитных маршрутизаторов.

Современное оборудование для передачи голоса посредством протокола IP (VoIP) позволяет обеспечивать приоритет передачи голосового трафика над передачей обычных данных, получать приемлемое качество звукового сигнала при сильном сжатии, эффективно подавлять различные шумы.

Сегодня телекоммуникационные операторы, специализирующиеся на предоставлении услуг IP-телефонии, применяют выделенные каналы с приоритетом голосового трафика над трафиком данных, что гарантирует высокое качество передачи речи. При этом используется сразу несколько вариантов маршрутизации голосового трафика для каждого из тысяч направлений, а в случае возникновения каких-либо проблем трафик автоматически перенаправляется на другие каналы.

По мере своего развития IP-телефония претерпевает важные качественные изменения: из дополнительной услуги она постепенно превращается в некий базовый сервис, который в скором времени может стать одним из компонентов мультисервисной технологии.

Важную роль играет протокол для передачи голосового трафика. Активно развиваются, во-первых, Н.323, берущий свое начало от традиционных телефонных протоколов, и, во-вторых, протоколы, созданные на базе IP-технологий, - такие как SIP, MGCP, MEGACO.

Российские операторы IP-телефонии наиболее часто используют протоколы группы Н.323. Это вызвано тем, что данный протокол был первым общепринятым стандартом промышленной реализации IP-телефонии. В настоящее время все большее внимание уделяется SIP. Протокол SIP в этой группе является самым простым видом протокола, более доступным для восприятия и понимания рядовым IT-специалистом. SIP особенно хорош в использовании во внутрикорпоративных сетях. При этом внешним протоколом в сети телекоммуникационного оператора для предприятия, как правило, все равно останется либо Н.323, либо MGCP/MEGACO.

Как было отмечено, IP-телефония становится одним из компонентов решения передачи разнородного мультимедийного трафика с использованием протокола TCP/IP. И вполне естественно, что развитие отдельных инструментов управления мультимедийным трафиком влияет на всю систему технологий пакетной передачи данных.

Следует также иметь в виду, что IP-телефония - это не просто альтернатива обычной телефонии. Актуальность развития решений IP-телефонии обусловлена не только возможностью снижения затрат на телефонные переговоры и техническое обслуживание инфраструктуры (хотя и это, безусловно, имеет значение). В стратегическом плане IP-телефония может стать единой технической платформой, которая позволит объединить решения для передачи данных и голоса, а также для обработки и последующего использования этой информации во всех бизнес-процессах. Таким образом, развитие IP-телефонии в определенном смысле является средством повышения производительности труда и развития бизнеса.

 

 


 

1. Общие вопросы технологии IP-телефонии

Терминология

IP-телефония (или VoIP - Voice over Internet protocol) - технология, которая использует сеть с пакетной коммутацией сообщений на базе протокола IP для передачи голоса в режиме реального времени.

При разговоре наши голосовые сигналы преобразуются в пакеты данных, которые затем сжимаются. Далее эти пакеты данных посылаются через Интернет приемной стороне. Когда пакеты данных достигают адресата, они декодируются в аналоговый голосовой сигнал.

IP-телефония в чистом виде может применяться в качестве линий передачи голоса, для чего могут использоваться специально выделенные цифровые каналы.

Особенности IP-телефонии

Почему IP-телефония привлекает к себе внимание?

Меньшие затраты на традиционные телефонные разговоры. В особенности это распространяется на междугородние и международные звонки. Также намного меньше затраты на инвестиции в оборудование. Высокие затраты телефонных компаний приводят к дорогим междугородным разговорам. Выделенное подключение, т. е. возможность постоянного доступа к телефонной связи с телефонной станции требует избыточной производительности за счет времени простоя в течение речевого сеанса. В таких случаях приходится оплачивать и то время, когда мы не используем телефонную линию.

В отличие от аналоговой телефонии, IP-телефония создает "подключение по запросу" и не имеет зарезервированных линий связи, что уменьшает затраты на телефонные разговоры.

Интернет-телефония частично использует существующие сети закрепленных за абонентами телефонных линий. Но в них она дополнительно применяет прогрессивную технологию сжатия передаваемых сигналов, которая более полно использует емкость телефонных линий.

При обычном способе передачи речи (аналоговой телефонии) используется канал пропускной способностью 64 кбит/с независимо от того, разговаривает абонент или молчит во время соединения. В случае передачи речи по IP-сетям, за счет оцифровки и компрессии (сжатия), речь передается в виде цифровой информации, причем если абонент молчит или делает паузы в разговоре, цифровая информация в канал не передается и канал не заполняется. Это позволяет в одном канале 64 кбит/с передавать от 8 и более соединений одновременно, что в свою очередь обеспечивает снижение тарифов, и, соответственно, оплата уменьшается.

Во-вторых, IP-телефония привлекает дополнительными возможностями совмещенного доступа в Интернет. Голосовые данные, факсимильные сообщения передаются уже с используемым IP-набором протоколов Интернета. Таким образом, голосовая информация и обычные данные могут передаваться по одной и той же сети. Это означает, что клиенты получают дополнительную полезную функцию от используемой сети, которая сочетает в себе свойства сети передачи обычных данных и телефонной сети. По сути это означает, что, имея компьютерную сеть, можно "наложить" на нее телефонию, и голосовой трафик этой сети будет передаваться по тем же каналам, что и данные (рис. 1.1). Доступ в Интернет становится более универсальным.

 

 

Рис. 1.1. Компьютерная сеть с наложенной на нее IP-телефонией

 

 

На рисунке показаны:

  • А, В - абоненты, обменивающиеся информацией по сети.
  • KА, КВ - компьютеры абонентов А и В соответственно.
  • ША и ШВ - шлюзы А и В.
  • FAXА и FAXВ - телефаксы А и В.
  • ТAА и ТAВ - телефоны А и В.

Открытая архитектура - еще одна важная особенность VoIP.

Еще одним положительным свойством IP-телефонии является наличие общих протоколов IP-телефонии: H.323, MGCP, SIP и т. д.

Принципы пакетной передачи

Для проведения сеанса связи мы набираем номер вызываемого абонента, после чего происходит соединение с сетевым шлюзом, как показано на рис. 1.2.

 

 

Рис. 1.2. Соединение с сетевым шлюзом

 

 

Голосовое сообщение абонента А с помощью микрофона преобразуется в электрический аналоговый сигнал, который претерпевает ряд преобразований (кодируется). Внутри шлюза происходит оцифровка голосового сигнала, как условно показано на рис. 1.3.

 

Рис. 1.3. Оцифровка голосового сигнала

 

 

После оцифровки цифровой сигнал, занимающий изначально, как и наша речь, канал в 64 кбит/с, сжимается в соответствии с выбранным кодеком (см.лекцию 3) и разбивается на пакеты сигналов в соответствии с выбранным типом кодирующего устройства (кодеком) (рис. 1.4 и 1.5.). В преобразовании участвуют как аппаратные, так и программные средства со стороны абонента А.

 

 

Рис. 1.4. Сжатие канала

 

 

Рис. 1.5. Разбиение на пакеты

Далее сжатые данные отправляются в сеть. На приемной стороне имеется аналогичный набор устройств абонента В (рис. 1.6), производящих преобразования в обратном порядке. Пакеты из сети поступают в телефонный шлюз, подключенный к телефонной линии. Все операции повторяются в обратном порядке, то есть осуществляется декодирование цифрового сигнала и преобразование его в аналоговую форму, которая приводит в действие звуковой динамик.

 

 

Рис. 1.6. Соединение с приемной стороной

 

 

Показанные этапы преобразования сигналов и передачи происходят в малые доли секунды, практически в реальном масштабе времени, что позволяет обеспечить дуплексный (двухсторонний) разговор.

Архитектура технологии VoIP может быть упрощенно представлена в виде двух плоскостей. Нижняя плоскость - это базовая сеть с маршрутизацией пакетов IP, верхняя - программные средства управления обслуживанием вызовов. Нижняя плоскость, говоря упрощенно, представляет собой комбинацию взаимосвязанных протоколов Интернета: это RTP (Real Time Transport Protocol), который функционирует поверх протокола UDP (User Datagram Protocol), расположенного, в свою очередь, в стеке протоколов TCP/IP над протоколом IP. Таким образом, иерархия протоколов RTP/UDP/IP представляет собой своего рода транспортный механизм для речевого трафика. Отметим, что в сетях с маршрутизацией пакетов IP для передачи данных всегда предусматриваются механизмы повторной передачи пакетов в случае их потери. При передаче голосовой информации в реальном масштабе времени этот прием неприменим, т. к. речевая информация очень чувствительна к задержкам, но менее чувствительна к потерям, поэтому для передачи речи (как и видеоинформации) используется механизм негарантированной доставки информации RTP/UDP/IP. Рекомендации ITU-Т допускают задержки в одном направлении, не превышающие 150 мс.

Как уже было сказано, верхняя плоскость архитектуры VoIP управляет обслуживанием запросов связи, т. е. адресацией, куда вызов должен быть направлен, и способом, каким должно быть установлено соединение между абонентами. Инструмент такого управления - телефонные системы сигнализации.

Адресация в IP-сетях

Каждый терминал в сети TCP/IP имеет адреса трех уровней.

  1. Физический (МАС-адрес) - локальный адрес узла, определяемый технологией, с помощью которой построена отдельная сеть, куда входит данный узел.
  2. Сетевой (IP-адрес), состоящий из 4 байтов, например, 109.26.17.100. Этот адрес используется на сетевом уровне. Он назначается администратором во время конфигурирования компьютеров и маршрутизаторов. IP-адрес состоит из двух частей: номера сети и номера узла. Номер сети может быть выбран администратором произвольно или назначен по рекомендации специального подразделения Интернета (Network Information Center, NIC), если сеть должна работать как составная часть Интернета. Обычно провайдеры услуг Интернета получают диапазоны адресов у подразделений NIC, а затем распределяют их между своими абонентами.

Номер узла в протоколе IP назначается независимо от локального адреса узла. Деление IP-адреса на поле номера сети и номера узла - гибкое, и граница между этими полями может устанавливаться весьма условно. Узел может входить в несколько IP-сетей. В этом случае узел должен иметь несколько IP-адресов, по числу сетевых связей. Таким образом, IP-адрес характеризует не отдельный компьютер или маршрутизатор, а одно сетевое соединение.

  1. Символьный (DNS-имя) - идентификатор-имя. Этот адрес назначается администратором и состоит из нескольких частей, например, имени машины, имени организации, имени домена.

Интернет - это совокупность тысяч компьютеров, объединенных в сети, которые, в свою очередь, соединены между собой посредством маршрутизаторов.

Сеть Интернет имеет иерархическую структуру. Этот подход является эффективным, потому что позволяет идентифицировать компоненты Интернета посредством адресов, также имеющих иерархическую структуру. Старшие биты адреса идентифицируют сеть, в которой находится рабочая станция, а младшие - расположение рабочей станции в этой сети.

Подавляющее большинство сетей сейчас использует протокол IPv4 (интернет-протокол версии 4), хотя уже разработана шестая версия протокола IP. Схема адресации протокола IPv4 предусматривает размер адресного поля 32 бита, что дает 232 (или 4 294 967 296) потенциальных адресов.

IP-адрес любой рабочей станции состоит из адреса сети и адреса компьютера в этой сети. В архитектуре адресации предусмотрено пять форматов адреса, каждый из которых начинается с одного, двух, трех или четырех битов, идентифицирующих класс сети (класс А, В, С, D или Е). Область сетевого идентификатора (Network ID) определяет конкретную сеть в классе, а область Host ID идентифицирует конкретный компьютер в сети, а именно:

  • адреса класса А идентифицируются начальным битом 0. Следующие семь битов определяют конкретную сеть (число возможных значений - 128, или 27). Остальные 24 бита определяют конкретный компьютер в сети, при возможном количестве компьютеров 16 777 216 (224). Адреса класса А предназначены для очень крупных сетей с большим количеством рабочих станций;
  • адреса класса В идентифицируются начальной двухбитовой двоичной последовательностью 10. Следующие 14 битов определяют сеть, при возможном количестве сетей 16 384 (214). Остальные 16 битов определяют конкретный компьютер, с возможным количеством компьютеров 65 536 (216);
  • адреса класса С идентифицируются начальной трехбитовой последовательностью 110. Следующие 21 бит определяют сеть, с возможным количеством сетей 2 097 152. Остальные 8 битов определяют конкретный компьютер в сети, с возможным количеством компьютеров 256 (28). Большинство организаций имеют адреса класса С;
  • адреса класса D идентифицируются начальной четырехбитовой последовательностью 1110. Адреса этого класса предназначены для групповой передачи, и оставшиеся 28 битов определяют групповой адрес;
  • адреса класса Е идентифицируются начальной четырехбитовой двоичной последовательностью 1111. Адреса этого класса зарезервированы для будущего использования.

 

 

Рис. 2.1. Структура IP-адреса

 

 

Способ, при помощи которого записываются все IP-адреса, называется пунктирной десятичной системой обозначений. Каждое 32-битовое адресное поле разделено на четыре поля в виде ххх.ххх.ххх.ххх, и каждому полю дается десятичное числовое значение от 0 до 255, выраженное в виде одного октета (28 = 256, или 0-255). Адреса класса А начинаются с 1 до 127, адреса класса В - с 128 до 191, и адреса класса С - с 192 до 223.

Класс Наименьший адрес Наибольший адрес
А 1.0.0.0 126.0.0.0
В 128.0.0.0 191.255.0.0
С 192.0.0.0 223.255.255.0
D 224.0.0.0 239.255.255.255
Е 240.0.0.0 247.255.255.255

Строго говоря, адрес идентифицирует только сетевой интерфейс рабочей станции, т. е. точку подключения к сети.

IP-адреса распределяются Корпорацией Интернет по присвоению имен и номеров (ICANN). Класс IP-адреса и, следовательно, количество возможных адресов компьютеров зависит от размеров организации. Организация, которой присвоены номера, может затем переназначить их на основе либо статической, либо динамической адресации. Статическая адресация означает жесткую привязку IP-адреса к конкретному компьютеру. При динамической адресации компьютеру присваивается доступный IP-адрес всякий раз при установлении соединения. Динамическое присвоение IP-адресов обычно осуществляется через маршрутизатор, работающий по протоколу DHCP (протокол динамической конфигурации рабочей станции). Наоборот, если доступ к поставщику осуществляется по xDSL, поставщик услуг Интернет обычно присваивает пользователю один или более статических IP-адресов.

Как уже отмечалось, протокол IP версии 4 предусматривает размер адресного поля 32 бита, что дает 232 (или 4 294 967 296) потенциальных адресов. Однако возрастающая популярность технологии TCP/IP привела к истощению плана нумерации протокола. Дополнительной проблемой является тот факт, что очень большое количество адресов класса А и класса В было выделено крупным организациям, которые в них на самом деле не нуждались, и поскольку фактически использовался только небольшой процент адресов, огромное количество доступных адресов было потеряно.

Протокол IPv6 решает этот вопрос путем расширения адресного поля до 128 битов, обеспечивая тем самым 2128 потенциальных адресов, что составляет величину 340.282.366.920.938.463.463.374.607.431.768.211.456.

Протокол IPv6 обладает также дополнительными функциональными возможностями, хотя для их реализации потребуется модернизация существующего сетевого программного обеспечения.

Но вернемся к протоколу IPv4. Компьютер, подключенный к сети Интернет, кроме IP-адреса может идентифицироваться доменным именем. Сеть Интернет разделена на логические области (домены). Адреса в системе имен доменов (DNS), администрирование которых лежит на ICANN, имеют стандартный вид: последовательность имен, разделенных точками. Домены TLD, которые идентифицируются как суффикс доменного имени, бывают двух типов: обобщенные домены верхнего уровня (net, com, org) и коды стран (ru, fi, ua).

Имена доменов гораздо легче запомнить и ввести, но необходимо преобразование для перевода имен доменов в IP-адреса - для того, чтобы разные маршрутизаторы и коммутаторы могли направить информацию в нужный пункт назначения.

 

 


 

Передача речи по IP-сети

Мобильность IP-телефонии

Разновидности мобильности

Сети IP-телефонии поддерживают четыре типа мобильности.

  1. Мобильность пользователя - возможность пользователя соединяться с сетью IP телефонии, используя для соединения различные типы терминалов.
  2. Мобильность терминала - возможность терминала менять физическое местонахождение, сохраняя способность соединения с сетью. В свою очередь мобильность терминала подразделяется на два вида:
    • дискретная мобильность терминала (roaming) - изменение физического местонахождения терминала за пределами сеанса связи с сетью;
    • непрерывная мобильность терминала (handover) - изменение физического местонахождения терминала в пределах сеанса связи с сетью с потерей или без потери передаваемых данных.
  3. Мобильность обслуживания предоставляет абоненту возможность воспользоваться услугой, на которую он подписался, вне зависимости от местонахождения и типа терминала.
  4. Режим виртуальной домашней сети - то же самое, что и мобильность обслуживания, но касается не одной услуги, а пакета услуг. При этом в зависимости от конкретной услуги, предоставляемой абоненту, в его обслуживание может быть вовлечен только сервер домашней сети или необходимо взаимодействие сервера домашней сети с сервером внешней сети.

Доступ к сетям IP-телефонии могут получить и абоненты сотовых сетей. Одной из перспективных технологий, обеспечивающих доступ мобильного абонента сотовой связи к сетям передачи данных, является система пакетной радиосвязи общего пользования (GPRS). К тому же взаимодействие IP-телефонии с технологиями беспроводного доступа (сейчас Wi-Fi, а в будущем и WiMAX) может дать толчок развитию принципиально нового направления - интернет-провайдеры с внешними каналами высокой производительности (ширина канала) могут превратиться в телефонные компании, обеспечивающие качественную международную связь. При наличии городских беспроводных сетей снимаются ограничения на мобильность пользователей, в результате качественная телефонная связь станет возможной в любой точке города.

В качестве SIP-терминалов абонент может воспользоваться несложными в обращении программными средствами, повторяющими функциональность телефонов. Настройка таких программ, называемых softphone, не требует глубоких знаний в области VoIP. Для осуществления вызовов достаточно ввести номер (SIP ID) в специальное окно ввода и нажать кнопку вызова.

IP – телефония

 

Реферат по дисциплине

«Современные сетевые технологии»

 

Выполнила студентка Макарова Л. А.

Группа УИТС-01

Руководитель проф. Лазарев В.А.

 

Самара 2011.

 


 

Содержание

Введение. 4

1. Общие вопросы технологии IP-телефонии. 6

1.1. Терминология. 6

1.2. Особенности IP-телефонии. 6

1.3. Принципы пакетной передачи. 7

1.4. Виды соединений, взаимодействие с компьютерной сетью.. 9

2. Использование протоколов Интернета в IP-телефонии. 15

2.1. Адресация в IP-сетях. 15

3. Передача речи по IP-сети. 18

3.1. Взаимодействие протоколов VoIP. 18

3.2. Качество передачи речевой информации по IP-сети. 19

4. Информационная безопасность в IP-сетях телефонии. 20

5. Мобильность IP-телефонии. 21

5.1. Разновидности мобильности. 21

5.2. Идентификация терминала и пользователя. 21

5.3. Сценарии мобильности в сетях IP-телефонии. 22

6. Особенности учета и биллинга IP-услуг. 24

 


 

Введение

Концепция передачи голоса по сети с помощью персонального компьютера сформировалась в Университете штата Иллинойс (США). В 1993 г. Чарли Кляйн опубликовал Maven - первую программу для передачи голоса по сети с помощью PC. Примерно в то же время одним из самых популярных мультимедийных приложений в сети стала CU-SeeMe, программа видеоконференций для Macintosh (Mac), разработанная в Корнельском университете.

Апрель 1994 г. Во время полета челнока Endeavor NASA передало на Землю его изображение с помощью программы CU-SeeMe. Полученный со спутника сигнал поступал на Maven, соединенную с Интернетом, и любой желающий мог услышать голоса астронавтов. Потом одну программу встроили в другую, и появился вариант CU-SeeMe с полными функциями аудио и видео как для Mac, так и для PC.

Февраль 1995 г. Израильская компания VocalTec предложила первую версию программы Internet Phone для владельцев мультимедийных PC, работающих под Windows. Это стало важной вехой в развитии интернет-телефонии. VocalTec надеялась использовать популярные в то время текстовые каналы Internet Relay Chat (IRC) в качестве двустороннего средства общения между людьми, имеющими сходные интересы. Но компании не удалось договориться с Eris Free Network (EFNet), курирующей IRC, поэтому доступ к этим общественным каналам для Internet Phone был закрыт. Через некоторое время была создана частная сеть серверов Internet Phone, и уже тысячи людей загрузили эту программу с домашней страницы VocalTec, - так начиналась практика регулярного общения.

В том же 1995 г. другие компании очень быстро оценили перспективы, которые открывала возможность разговаривать, находясь в разных полушариях и не платя при этом за международные звонки.

В сентябре того же года в розничной продаже появилась первая из таких программ - DigiPhone, которая предложила "дуплексные" возможности, позволяя говорить и слушать одновременно. В этот момент и родилась привлекательная для абонентов настоящая интерактивная связь.

В марте 1996 г. произошло еще одно знаменательное событие. Тогда было объявлено о совместном проекте под названием "Internet Telephone Gateway" двух компаний: уже известной нам VocalTec и крупнейшего производителя программного обеспечения для компьютерной телефонии Dialogic. Его целью было научить работать через Интернет обычный телефонный аппарат, для чего между Сетью и ТфОП устанавливался специализированный шлюз. Последний получил название VTG (VocalTec Telephone Gateway) и представлял собой специализированную программу, которая использовала голосовые платы Dialogic как интерфейс с обычными телефонными линиями. Специально разработанные многоканальные голосовые платы, во-первых, позволяли одной системе VTG поддерживать до восьми независимых телефонных разговоров через Сеть, а во-вторых, убрали проблему адресации, взяв на себя преобразование обычных телефонных номеров в IP-адреса (и обратно). Для разговора одного пользователя в том продукте достаточно было ширины полосы канала порядка 11 кбит/с. Вот так возможность высокого уплотнения канала и малая стоимость связи создали предпосылки для коренных изменений телекоммуникационного мира.

Еще через год стали вполне привычными соединения через Интернет двух обычных телефонных абонентов, находящихся в совершенно разных местах планеты.

Всего за несколько лет технологии IP-телефонии значительно эволюционировали, и распространенные сегодня решения существенно отличаются от прежних. С одной стороны, это обусловлено развитием аппаратных решений, в частности появлением мощных магистральных и транзитных маршрутизаторов и высокоскоростных телекоммуникационных каналов. С другой стороны, нельзя не отметить и появления таких качественно новых технологий, как динамическая маршрутизация с учетом качества обслуживания в мультисервисных IP-сетях и резервирование ресурсов для контроля качества обслуживания транзитных маршрутизаторов.

Современное оборудование для передачи голоса посредством протокола IP (VoIP) позволяет обеспечивать приоритет передачи голосового трафика над передачей обычных данных, получать приемлемое качество звукового сигнала при сильном сжатии, эффективно подавлять различные шумы.

Сегодня телекоммуникационные операторы, специализирующиеся на предоставлении услуг IP-телефонии, применяют выделенные каналы с приоритетом голосового трафика над трафиком данных, что гарантирует высокое качество передачи речи. При этом используется сразу несколько вариантов маршрутизации голосового трафика для каждого из тысяч направлений, а в случае возникновения каких-либо проблем трафик автоматически перенаправляется на другие каналы.

По мере своего развития IP-телефония претерпевает важные качественные изменения: из дополнительной услуги она постепенно превращается в некий базовый сервис, который в скором времени может стать одним из компонентов мультисервисной технологии.

Важную роль играет протокол для передачи голосового трафика. Активно развиваются, во-первых, Н.323, берущий свое начало от традиционных телефонных протоколов, и, во-вторых, протоколы, созданные на базе IP-технологий, - такие как SIP, MGCP, MEGACO.

Российские операторы IP-телефонии наиболее часто используют протоколы группы Н.323. Это вызвано тем, что данный протокол был первым общепринятым стандартом промышленной реализации IP-телефонии. В настоящее время все большее внимание уделяется SIP. Протокол SIP в этой группе является самым простым видом протокола, более доступным для восприятия и понимания рядовым IT-специалистом. SIP особенно хорош в использовании во внутрикорпоративных сетях. При этом внешним протоколом в сети телекоммуникационного оператора для предприятия, как правило, все равно останется либо Н.323, либо MGCP/MEGACO.

Как было отмечено, IP-телефония становится одним из компонентов решения передачи разнородного мультимедийного трафика с использованием протокола TCP/IP. И вполне естественно, что развитие отдельных инструментов управления мультимедийным трафиком влияет на всю систему технологий пакетной передачи данных.

Следует также иметь в виду, что IP-телефония - это не просто альтернатива обычной телефонии. Актуальность развития решений IP-телефонии обусловлена не только возможностью снижения затрат на телефонные переговоры и техническое обслуживание инфраструктуры (хотя и это, безусловно, имеет значение). В стратегическом плане IP-телефония может стать единой технической платформой, которая позволит объединить решения для передачи данных и голоса, а также для обработки и последующего использования этой информации во всех бизнес-процессах. Таким образом, развитие IP-телефонии в определенном смысле является средством повышения производительности труда и развития бизнеса.

 

 


 

1. Общие вопросы технологии IP-телефонии

Терминология

IP-телефония (или VoIP - Voice over Internet protocol) - технология, которая использует сеть с пакетной коммутацией сообщений на базе протокола IP для передачи голоса в режиме реального времени.

При разговоре наши голосовые сигналы преобразуются в пакеты данных, которые затем сжимаются. Далее эти пакеты данных посылаются через Интернет приемной стороне. Когда пакеты данных достигают адресата, они декодируются в аналоговый голосовой сигнал.

IP-телефония в чистом виде может применяться в качестве линий передачи голоса, для чего могут использоваться специально выделенные цифровые каналы.

Особенности IP-телефонии

Почему IP-телефония привлекает к себе внимание?

Меньшие затраты на традиционные телефонные разговоры. В особенности это распространяется на междугородние и международные звонки. Также намного меньше затраты на инвестиции в оборудование. Высокие затраты телефонных компаний приводят к дорогим междугородным разговорам. Выделенное подключение, т. е. возможность постоянного доступа к телефонной связи с телефонной станции требует избыточной производительности за счет времени простоя в течение речевого сеанса. В таких случаях приходится оплачивать и то время, когда мы не используем телефонную линию.

В отличие от аналоговой телефонии, IP-телефония создает "подключение по запросу" и не имеет зарезервированных линий связи, что уменьшает затраты на телефонные разговоры.

Интернет-телефония частично использует существующие сети закрепленных за абонентами телефонных линий. Но в них она дополнительно применяет прогрессивную технологию сжатия передаваемых сигналов, которая более полно использует емкость телефонных линий.

При обычном способе передачи речи (аналоговой телефонии) используется канал пропускной способностью 64 кбит/с независимо от того, разговаривает абонент или молчит во время соединения. В случае передачи речи по IP-сетям, за счет оцифровки и компрессии (сжатия), речь передается в виде цифровой информации, причем если абонент молчит или делает паузы в разговоре, цифровая информация в канал не передается и канал не заполняется. Это позволяет в одном канале 64 кбит/с передавать от 8 и более соединений одновременно, что в свою очередь обеспечивает снижение тарифов, и, соответственно, оплата уменьшается.

Во-вторых, IP-телефония привлекает дополнительными возможностями совмещенного доступа в Интернет. Голосовые данные, факсимильные сообщения передаются уже с используемым IP-набором протоколов Интернета. Таким образом, голосовая информация и обычные данные могут передаваться по одной и той же сети. Это означает, что клиенты получают дополнительную полезную функцию от используемой сети, которая сочетает в себе свойства сети передачи обычных данных и телефонной сети. По сути это означает, что, имея компьютерную сеть, можно "наложить" на нее телефонию, и голосовой трафик этой сети будет передаваться по тем же каналам, что и данные (рис. 1.1). Доступ в Интернет становится более универсальным.

 

 

Рис. 1.1. Компьютерная сеть с наложенной на нее IP-телефонией

 

 

На рисунке показаны:



Поделиться:


Последнее изменение этой страницы: 2016-07-11; просмотров: 489; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.178.157 (0.1 с.)