Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву
Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Методы аэрокосмической съемкиСодержание книги
Поиск на нашем сайте
Аэрокосмическая съемка подразделяется на фотографиче- скую, телевизионную, многозональную, спектрометрическую, ультрафиолетовую, инфракрасную (тепловую), радиотепловую, радиолокационную и лазерную (лидарную). Фотографическая съемка выполняется фотоаппаратами на фотопленке, которую затем доставляют на Землю для дальней- шей обработки и получения плановых и перспективных снимков.
При телевизионной съемке изображение проектируется на приемное устройство – видикон. С видикона электрические сиг- налы по радиоканалу поступают на Землю или записываются на магнитную пленку с последующей передачей. Съемка осуществ- ляется с помощью телевизионных камер (кадровая) или скани- рующих устройств. При кадровой съемке проводится последова- тельная экспозиция различных участков поверхности и передача изображения по радиоканалам. При сканерной съемке изображе- ние формируется из отдельных полос, получающихся в результа- те ''просматривания" местности лучом поперек движения носите- ля (сканирование). Изображение получается в виде непрерывной ленты. Со сканирующих устройств информацию непосредствен- но с магнитных лент можно вводить в ЭВМ [2]. Многозональная съемка выполняется как с помощью фото- графических (МКФ-6,4 ЗЕНИТ АЭРО-707), так и электронно- оптических сканирующих систем (Фрагмент). Снимки получают в различных зонах спектра. Обработка таких снимков дает воз- можность использовать синтезированные псевдоцветные изобра- жения. Перечисленные виды съемки позволяют наблюдать за тай- фунами, ураганами, изучать динамику состояния природной сре- ды, характер антропогенного загрязнения (табл. 1). Спектрометрическую съемку проводят специальными при- борами - спектрографами, которые измеряют коэффициенты спектральной яркости природных объектов относительно этало- на. Спектрометрическая съемка позволяет создавать банк данных о спектральных характеристиках различных объектов и типах подстилающей поверхности, регистрировать концентрацию СО2, малых примесей (SO2, CLO, NO2), аэрозолей и озона. Ультрафиолетовая съемка осуществляется с использованием специальных источников излучения и фотоумножителей в каче- стве приемников. Её разновидность – флуоресцентная съемка – используется для обнаружения урановых месторождений, нефти и газов, способных светиться при облучении ультрафиолетом.
Таблица 1
*
см. геофизические методы
11
Инфракрасная съемка, или тепловая фиксирует тепловое из- лучение природных объектов. Широко применяется для изучения районов вулканической активности, морских акваторий, подзем- ных вод, геологических процессов в районах вечной мерзлоты, нефтяного загрязнения. Радиотепловая съемка регистрирует излучение природных объектов в микроволновом диапазоне электромагнитного спек- тра. Используется для изучения геотермальных объектов, вулка- нической деятельности, обнаружения лесных пожаров, для на- блюдения за состоянием поверхностных вод, лесов, сельскохо- зяйственных угодий и т.д. Радиолокационная съемка фиксирует естественное радиоиз- лучение объектов и искусственный радиосигнал от этих объектов в сантиметровом диапазоне спектра 0,3 - 100 см. Ее применяют при исследовании нефтяного загрязнения водной поверхности, изучения зон чрезвычайной ситуации, изменения характеристик земной поверхности (влажности, засоленности и т.д.). Лазерная съемка (лазерные локаторы – лидары) позволяет оценивать загрязнение воздуха, состояние дна водоемов и т.д. С помощью лазерного флуоресцентного зондирования наблюдают за источниками загрязнения природной среды, измеряют концен- трации примесей в водной среде (хлорофилл, нефтепродукты и т.д.), изучают распределение примесей по глубине, распознают геологические породы (см. табл. 1).
Материалы съёмки
В результате съёмки получаем информацию в виде негати- вов и аналоговых сигналов, записанных на магнитную ленту. После обработки исходных материалов имеем позитивные отпечатки (аэро- и космоснимки), фотодиапозитивы, цифровые данные на магнитной ленте, пригодные для обработки на ЭВМ, распечатки, графики и диаграммы, построенные ЭВМ. Чаще все- го для геолого-экологических исследований используются черно- белые, цветные и синтезированные (ложно цветные) снимки.
По уровню генерализации, степени обзорности и величине Разрешающей способности космические снимки подразделя- ются на: · · · · · глобальные – масштаб <1:15000000, континентальные – 1:5000000-1:2500000, региональные – 1:1000000-1:500000, локальные – 1:200000-1:100000, детальные – масштаб >1:100000.
Аэроснимки подразделяются на: · мелкомасштабные – масштаб <1:30000, · среднемасштабные – 1:30000-1:10000, · крупномасштабные – масштаб >1:10000.
Чем мельче масштаб, тем большую площадь охватывает снимок.
Таблица 4
Донные отложения рек, озер, прудов, морей, болот – актив- ные сорбенты загрязняющих веществ и практически конечные пункты в цепи поверхностной миграции природных и техноген- ных веществ. Степень загрязнения донных отложений указывает на загрязнение всей среды в целом. Атмогеохимические исследования состоят из определения газов в атмосфере, почве, горных породах. Попутно измеряется концентрация парообразной ртути. Техногенное загрязнение ртутью связано с добычей и пере- работкой ртутьсодержащих полезных ископаемых, сбросом сточ- ных вод, захоронением отходов и т. д. Кроме наземных и сква- жинных исследований, измерения проводят с помощью аппара- туры, установленной на вертолетах, автомашинах и судах.
Для определения ртути в атмосферном воздухе используют- ся приборы ГРАД (газортутный анализатор дистанционный), СФАР (селективный фазовый анализатор ртути), ГРОЗА (газо- ртутный оптический зеемановский анализатор); для экспрессного определения ртути в атмосферном и почвенном воздухе приме- няются АГП-01 (анализатор газортутный переносной) и другие [12].
Снежный покров является индикатором загрязнения атмо- сферы, и в то же время к моменту снеготаяния он становится вто- ричным источником загрязнения грунтов, подземных и поверх- ностных вод. Изучение снега (мощность, плотность, степень загрязнения) необходимо проводить в районах многолетней мерзлоты для оп- ределения влияния снежного покрова на изменение температуры пород и на изменение амплитуды колебания температуры возду- ха, от чего зависит глубина сезонного оттаивания и сезонного промерзания. Гидрохимические исследования позволяют определить фи- зико-химические параметры и солевой состав поверхностных вод. Исследованию подвергаются все реки и притоки. В местах крупных постоянных источников загрязнения необходимо прово- дить режимные наблюдения. При биогеохимических исследованиях изучается микроэле- ментный состав растительности. Загрязняющие вещества проникают в растения через воздух, грунты и с дождевыми осадками. Растительный покров является одним из накопителей тяжелых металлов и радиоактивных элементов. С помощью многозональ- ной (синтезированные снимки), инфракрасной и аэрогамма- съемки можно наметить участки угнетенной растительности, вы- делить площади для биогеохимического опробования. Вблизи постоянного источника загрязнения, например гор- нодобывающего предприятия, для контроля загрязнения исполь- зуют автоматические станции контроля (АСК). Так, автоматизированная система АСВА-П определяет в почвах фосфор, кальций, алюминий, марганец, магний, калий, нитраты и ряд других веществ. Автоматический многоканальный анализатор АМА-202 регистрирует семнадцать физико- химических параметров воды: рh, Eh, температуру, мутность во- ды, концентрацию растворенного кислорода, ионов Cl, NO3, F, Cu2+, Na, Fe, Cr, PO4, нитритов и т.д. Существуют автоматизированные станции контроля за воз- душной средой типа АНКОС-АГ, ПОСТ-2, АТМОСФЕРА-П и другие. Станция ПОСТ-2 измеряет концентрации окиси углерода и двуокиси серы, отбирает тридцать три пробы воздуха на опре- деление пяти газообразных примесей, сажу, пыль, измеряет ско- рость ветра, температуру и влажность воздуха, отбирает пробы воздуха по четырем каналам для последующих лабораторных анализов.
|
||||||||||||||||||||||||||||||||||||||||||||
|
Последнее изменение этой страницы: 2016-07-11; просмотров: 1208; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 216.73.216.102 (0.006 с.) |