Изменения в работе МАС-уровня при полнодуплексной работе



Мы поможем в написании ваших работ!


Мы поможем в написании ваших работ!



Мы поможем в написании ваших работ!


ЗНАЕТЕ ЛИ ВЫ?

Изменения в работе МАС-уровня при полнодуплексной работе



Технология коммутации сама по себе не имеет непосредственного отношения к методу доступа к среде, который используется портами коммутатора. При под­ключении сегментов, представляющих собой разделяемую среду, порт коммутато­ра должен поддерживать полудуплексный режим, так как является одним из узлов этого сегмента.

Однако, когда к каждому порту коммутатора подключен не сегмент, а только один компьютер, причем по двум раздельным каналам, как это происходит почти у всех стандартах физического уровня, кроме коаксиальных версий Ethernet, ситуация становится не такой однозначной. Порт может работать как в обычном полудуплексном режиме, так и в полнодуплексном. Подключение к портам коммутатора не сегментов, а отдельных компьютеров называется микросегментацией. В обычном режиме работы порт коммутатора по-прежнему распознает коллизии. Доменом коллизий в этом случае будет участок сети, включающий передатчик коммутатора, приемник коммутатора, передатчик сетевого адаптера компьютера, Приемник сетевого адаптера компьютера и две витые пары, соединяющие передатчики с приемниками (рис. 4.27).

Коллизия возникает, когда передатчики порта коммутатора и сетевого адаптера одновременно или почти одновременно начинают передачу своих кадров, считая, что изображенный на рисунке сегмент свободен. Правда, вероятность коллизии в таком сегменте гораздо меньше, чем в сегменте, состоящем из 20-30 узлов, но она не нулевая. При этом максимальная производительность сегмента Ethernet в 14 880 кадров в секунду при минимальной длине кадра делится между передатчиком портами коммутатора и передатчиком сетевого адаптера. Если считать, что она делится пополам, то каждому предоставляется возможность передавать примерно по 7440 кадров в секунду.

Рис. 4.27. Домен коллизий, образуемый компьютером и портом коммутатора

В полнодуплексном режиме одновременная передача данных передатчиком порта комутатора и сетевого адаптера коллизией не считается. В принципе, это достаточно естественный режим работы для индивидуальных полнодуплексных каналов связи, и он часто используется в протоколах территориальных сетей. При полнодуплексной связи порты Ethernet могут передавать данные со скоростью 10Мбит/с — по 10 Мбит/с в каждом направлении.

Естественно, необходимо, чтобы МАС-узлы взаимодействующих устройств поддерживали этот специальный режим. В случае когда только один узел будет поддерживать полнодуплексный режим, второй узел будет постоянно фиксировать колизии и приостанавливать свою работу, в то время как другой узел будет продолжать передавать данные, которые никто в этот момент не принимает. Изменения которые нужно сделать в логике МАС-узла, чтобы он мог работать в уплексном режиме, минимальны — нужно просто отменить фиксацию и отработку коллизий в сетях Ethernet, а в сетях Token Ring и FDDI — посылать кадры в коммутатор, не дожидаясь прихода токена доступа, а тогда, когда это нужно конечному узлу. Фактически, при работе в полнодуплексном режиме МАС-узел не использует метод доступа к среде, разработанный для данной технологии.

Так как переход на полнодуплексный режим работы требует изменения логики работы МАС-узлов и драйверов сетевых адаптеров, то он сначала был опробован при соединении двух коммутаторов. Уже первые модели коммутатора EtherSwitch компании Kalpana поддерживали полнодуплексный режим при взаимном соедине­нии, обеспечивая скорость взаимного обмена 20 Мбит/с.

Позже появились версии полнодуплексного соединения FDDI-коммутаторов, которые при одновременном использовании двух колец FDDI обеспечивали ско­рость обмена в 200 Мбит/с.

Сейчас для каждой технологии можно найти модели коммутаторов, которые поддерживают полнодуплексный обмен при соединении коммутатор—коммутатор.

После опробования полнодуплексной технологии на соединениях коммутатор-коммутатор разработчики реализовали ее и в сетевых адаптерах, в основном адап­терах Ethernet и Fast Ethernet. При разработке технологий Fast Ethernet и Gigabit Ethernet полнодуплексный режим стал одним из двух полноправных стандартных режимов работы узлов сети. Многие сетевые адаптеры сейчас могут поддерживать оба режима работы, отрабатывая логику алгоритма доступа CSMA/CD при под­ключении к порту концентратора и работая в полнодуплексном режиме при под­ключении к порту коммутатора.

При использовании полнодуплексных версий протоколов происходит некото­рое сближение различных технологий, так как метод доступа во многом определял лицо каждой технологии. Различие технологий остается в различных форматах кадров, а также в процедурах контроля корректности работы сети на физическом и канальном уровнях.

Полнодуплексные версии протоколов могли бы быть реализованы и в мостах. Принципиальных препятствий для этого не было, просто в период применения локальных мостов потребности в высокоскоростной передаче межсегментного трафика не возникало.

Проблема управления потоком данных при полнодуплексной работе

Простой отказ от поддержки алгоритма доступа к разделяемой среде без какой-либо модификации протокола ведет к повышению вероятности потерь кадров ком­мутаторами, так как при этом теряется контроль за потоками кадров, направляемых конечными узлами в сеть. Раньше поток кадров регулировался методом доступа к разделяемой среде, так что слишком часто генерирующий кадры узел вынужден был ждать своей очереди к среде и фактическая интенсивность потока данных, который направлял в сеть этот узел, была заметно меньше той интенсивности, которую узел хотел бы отправить в сеть. При переходе на полнодуплексный режим узлу разрешается отправлять кадры в коммутатор всегда, когда это ему нужно, поэтому коммутаторы сети могут в этом режиме сталкиваться с перегрузками, не имея при этом никаких средств регулирования («притормаживания») потока кад­ров.

Причина перегрузок обычно кроется не в том, что коммутатор является блоки­рующим, то есть ему не хватает производительности процессоров для обслужива­ния потоков кадров, а в ограниченной пропускной способности отдельного порта, которая определяется временными параметрами протокола. Например, порт Ethernet не может передавать больше 14 880 кадров в секунду, если он не нарушает времен­ных соотношений, установленных стандартом.

Поэтому, если входной график неравномерно распределяется между выходными портами, легко представить ситуацию, когда в какой-либо выходной порт коммутатора будет направляться трафик с суммарной средней интенсивностью большей, чем протокольный максимум. На рис. 4.28 изображена как раз такая ситуация, когда в порт 3 коммутатора направляется трафик от портов 1,2,4 и 6, с суммарной интенсивностью в 22 100 кадров в секунду. Порт 3 оказывается загружен на 150 %. Естественно, что когда кадры поступают в буфер порта со скоростью 20 100 кадров в секунду, а уходят со скоростью 14 880 кадров в секунду, то внутренний буфер выходного порта начинает неуклонно заполняться необработанными кадрами.

Рис. 4.28. Переполнение буфера порта из-за несбалансированности трофика

 

Какой бы ни был объем буфера порта, он в какой-то момент времени обязатель­но переполнится. Нетрудно подсчитать, что при размере буфера в 100 Кбайт в приведенном примере полное заполнение буфера произойдет через 0,22 секунды после начала его работы (буфер такого размера может хранить до 1600 кадров размером в 64 байт). Увеличение буфера до 1 Мбайт даст увеличение времени заполнения буфера до 2,2 секунд, что также неприемлемо. А потери кадров всегда очень нежелательны, так как снижают полезную производительность сети, и коммутатор, теряющий кадры, может значительно ухудшить производительность сети вместо ее улучшения.

Коммутаторы локальных сетей — не первые устройства, которые сталкиваются с таакой проблемой. Мосты также могут испытывать перегрузки, однако такие ситуации при использовании мостов встречались редко из-за небольшой интенсивности межсегментного графика, поэтому разработчики мостов не стали встраивать протоколы локальных сетей или в сами мосты механизмы регулирования потока. В глобальных сетях коммутаторы технологии Х.25 поддерживают протокол канального уровня LAP-B, который имеет специальные кадры управления потоком “приемник готов”(RR) и «Приемник не готов» (RNR), аналогичные по назначению кадрам протокола LLC2 (это не удивительно, так как оба протокола принадлежат семейству протоколов HDLC. Протокол LAP-B работает между соседними роммутаторами сети Х.25 и в том случае, когда очередь коммутатора доходит до опасной границы, запрещает своим ближайшим соседям с помощью кадра «Приемник не готов» передавать ему кадры, пока очередь не уменьшится до нормального уровня. В сетях Х.25 такой протокол необходим, так как эти сети никогда не использовали разделяемые среды передачи данных, а работали по индивидуальым каналам связи в полнодуплексном режиме. При разработке коммутаторов локальных сетей ситуация коренным образом отличалась от ситуации, при которой создавались коммутаторы территориальных сетей. Основной задачей было сохранение конечных узлов в неизменном виде, что исключало корректировку протоколов локальных сетей. А в этих протоколах про­цедур управления потоком не было — общая среда передачи данных в режиме раз­деления времени исключала возникновение ситуаций, когда сеть переполнялась бы необработанными кадрами. Сеть не накапливала данных в каких-либо проме­жуточных буферах при использовании только повторителей или концентраторов.

ПРИМЕЧАНИЕ Здесь речь идет о протоколах МАС-уровня (Ethernet, Token Ring и т. п), так как мосты и коммутаторы имеют дело только с ними. Протокол LLC2, который умеет управлять потоком данных, для целей управления пото­ком кадров в коммутаторах использовать нельзя. Для коммутаторов протокол LLC (все его процедуры: 1,2 и 3) прозрачен, как и все остальные протоколы верхних уровней, — коммутатор не анализирует заголовок LLC, считая его просто полем данных кадра МАС-уровня._____________________________________________________________

Применение коммутаторов без изменения протокола работы оборудования все­гда порождает опасность потери кадров. Если порты коммутатора работают в обыч­ном, то есть в полудуплексном режиме, то у коммутатора имеется возможность оказать некоторое воздействие на конечный узел и заставить его приостановить передачу кадров, пока у коммутатора не разгрузятся внутренние буферы. Нестан­дартные методы управления потоком в коммутаторах при сохранении протокола доступа в неизменном виде будут рассмотрены ниже.

Если же коммутатор работает в полнодуплексном режиме, то протокол работы конечных узлов, да и его портов все равно меняется. Поэтому имело смысл для поддержки полнодуплексного режима работы коммутаторов несколько модифи­цировать протокол взаимодействия узлов, встроив в него явный механизм управ­ления потоком кадров.

Работа над выработкой стандарта для управления потоком кадров в полнодуп­лексных версиях Ethernet и Fast Ethernet продолжалась несколько лет. Такой дли­тельный период объясняется разногласиями членов соответствующих комитетов по стандартизации, отстаивающих подходы фирм, которые реализовали в своих коммутаторах собственные методы управления потоком.

В марте 1997 года принят стандарт IEEE 802.3x на управление потоком в пол­нодуплексных версиях протокола Ethernet. Он определяет весьма простую проце­дуру управления потоком, подобную той, которая используется в протоколах LLC2 и LAP-B. Эта процедура подразумевает две команды — «Приостановить передачу» и «Возобновить передачу», которые направляются соседнему узлу. Отличие от протоколов типа LLC2 в том, что эти команды реализуются на уровне символов кодов физического уровня, таких как 4В/5В, а не на уровне команд, оформленных в специальные управляющие кадры. Сетевой адаптер или порт коммутатора, под­держивающий стандарт 802.3x и получивший команду «Приостановить передачу», должен прекратить передавать кадры впредь до получения команды «Возобновить передачу».

Некоторые специалисты высказывают опасение, что такая простая процедура управления потоком окажется непригодной в сетях Gigabit Ethernet. Полная при­остановка приема кадров от соседа при такой большой скорости передачи кадров (1 488 090 кадр/с) может быстро вызвать переполнение внутреннего буфера те­перь у этого соседа, который в свою очередь полностью заблокирует прием кадров у своих ближайших соседей. Таким образом, перегрузка просто распространится по сети, вместо того чтобы постепенно исчезнуть. Для работы с такими скоростными протоколами необходим более тонкий механизм регулирования потока, который бы указывал, на какую величину нужно уменьшить интенсивность потока входящих кадров в перегруженный коммутатор, а не приостанавливал этот поток до нуля. Подобный плавный механизм регулирования потока появился у коммутаторов АТМ через несколько лет после их появления. Поэтому существует мнение, что стандарт 802.3x — это временное решение, которое просто закрепило суще­ствующие фирменные простые механизмы управления потоком ведущих производителей коммутаторов. Пройдет некоторое время, и этот стандарт сменит другой стандарт — более сложный и более приспособленный для высокоскоростных техно­логий, таких как Gigabit Ethernet.

 



Последнее изменение этой страницы: 2016-06-29; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 35.172.217.174 (0.014 с.)