Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Означення дискретної випадкової величиниСодержание книги Поиск на нашем сайте
Випадковою називається величина, яка може набувати різних числових значень. Строгіше означення випадкової величини пов’язане з поняттям простору елементарних подій. Нехай задано простір елементарних подій W. Однозначна числова функція яку задано на просторі елементарних подій, називається випадковою величиною. Якщо простір W дискретний, то випадкова величина дискретна. Неперервному простору елементарних подій відповідає неперервна випадкова величина. Співвідношення між значеннями випадкової величини і їхніми ймовірностями називається законом розподілу випадкової величини. Для дискретних випадкових величин закони розподілу можуть задаватися множиною значень, що їх набуває випадкова величина, і ймовірностями цих значень. Якщо то або, якщо величина набуває зліченної множини значень, то Закони розподілу дискретних випадкових величин задаються у табличній формі (подаються значення випадкової величини і їхні ймовірності), аналітичній (наводиться формула, за якою обчислюються ймовірності для заданих значень випадкової величини), графічній (у прямокутній системі координат задається набір точок сполучивши точки відрізками прямих, дістанемо многокутник розподілу ймовірностей). Універсальним способом задання закону розподілу ймовірностей є функція розподілу Для дискретних величин Функція розподілу — неспадна, неперервна зліва,
Біноміальний закон розподілу Імовірності в цьому законі визначаються за формулою m = 0,1,2, …, n. Закон справджується для схеми незалежних повторних випробувань, у кожному з яких подія А настає з імовірністю р. Частота настання події А має біноміальний закон розподілу. Імовірнісна твірна: Закон розподілу Пуассона Дискретна випадкова величина має розподіл Пуассона, якщо вона набуває зліченної множини значень з імовірностями Цей розподіл описує кількість подій, які настають в однакові проміжки часу за умови, що ці події відбуваються незалежно одна від одної зі сталою інтенсивністю. Розподіл Пуассона розглядається як статистична модель для кількості альфа-частинок, що їх випромінює радіоактивне джерело за певний проміжок часу; кількості викликів, які надходять на телефонну станцію за певний період доби; кількості вимог щодо виплати страхових сум за рік; кількості дефектів на однакових пробах речовини і т. ін. Розподіл застосовується в задачах статистичного контролю якості, у теорії надійності, теорії масового обслуговування. Математичне сподівання і дисперсія в цьому розподілі однакові і дорівнюють а. Для цього розподілу складено таблиці щодо різних значень (0,1 – 20). У таблицях для відповідних значень а наведено ймовірності Якщо у схемі незалежних повторних випробувань n велике і р або 1 – р прямують до нуля, то біноміальний розподіл апроксимується розподілом Пуассона, коли Ймовірна твірна 25. Числові характеристики розподілу Біноміального закону розподілу: Імовірності в цьому законі визначаються за формулою m = 0,1,2, …, n. Закон справджується для схеми незалежних повторних випробувань, у кожному з яких подія А настає з імовірністю р. Частота настання події А має біноміальний закон розподілу. Числові характеристики розподілу: Пуасонівський закон: M(X)=a=np; D(X)=a; P(X)=a. Рівномірний закон розподілу Якщо ймовірність потрапляння випадкової величини на інтервал пропорційна до довжини інтервалу і не залежить від розташування інтервалу на осі, то вона має рівномірний закон розподілу. Щільність такого розподілу: Рівномірний закон розподілу легко моделювати. За допомогою функціональних перетворень із величин, розподілених рівномірно, можна діставати величини з довільним законом розподілу. Числові характеристики розподілу: 27. Нормальний закон розподілу задається щільністю Параметри , які входять до виразу щільності розподілу, є відповідно математичним сподіванням та середнім квадратичним відхиленням випадкової величини. Нормальний закон розподілу широко застосовується в математичній статистиці. Для обчислення ймовірності потрапляння випадкової величини, розподіленої нормально, на проміжок використовується функція Лапласа: Часто застосовується також формула:
|
||||
Последнее изменение этой страницы: 2016-06-26; просмотров: 199; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.135.208.236 (0.005 с.) |