Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Построение равноугольной спирали с использованием чисел Фибоначчи↑ Стр 1 из 4Следующая ⇒ Содержание книги
Поиск на нашем сайте
Начнем с квадрата со стороной, равной единице, пристроим к нему другой такой же квадрат, к ним пристроим квадрат со стороной, равной 2, к ним пристроим квадрат со стороной, равной 3. Продолжая в том же духе, получим квадраты со сторонами, равными 5, 8, 13, 21, 34 и так далее. (Воспроизводится с разрешения Fascinating Fibonaccis by Trudy Ha.rn.mel Garland; © 1987 by Dale Seymour Publications, P. O. Box 10888, Palo Alto, CA 94303.)
На основе двух их сторон строится примыкающий к ним квадрат со стороной удвоенного размера, затем квадраты со сторонами утроенного, упятеренного и т.д. размера. Заметьте, что таким образом строится последовательность прямоугольников, причем отношения между сторонами следующих друг за другом членов последовательности образуют золотую пропорцию. Затем соединяем противоположные углы квадратов, начиная с наименьшего, дугами, являющимися продолжением друг друга, и получаем спираль. Нам знакома эта спираль, повторяемая в форме некоторых галактик, бараньего рога, многих морских раковин или гребешков океанских волн, по которым скользят любители серфинга. Способ построения делает ее форму неизменной, и она не зависит от размера первого квадрата, с которого началось построение: форма с ростом не меняется. Журналист Уильям Хоффер заметил: «Большая золотая спираль кажется естественным способом наращивания количества без изменения качества»2. Кое-кто верит, что числа Фибоначчи можно использовать для различных предсказаний, в особенности относительно курса акций; такие предсказания сбываются достаточно часто, чтобы поддерживать постоянный интерес к ним. Ряд Фибоначчи настолько популярен, что в Калифорнии существует даже Американская ассоциация Фибоначчи при университете Санта-Клары, опубликовавшая с 1962 года тысячи страниц исследований по этой теме. «Liber Abaci» Фибоначчи стала впечатляющим первым шагом на пути создания инструмента, являющегося ключом к приручению риска. Но общество еще не было готово к применению чисел для анализа связанных с риском ситуаций. Во времена Фибоначчи люди чаще связывали риск с капризами природы. Им нужно было еще научиться рассматривать его как творение рук человеческих и набраться смелости бороться с судьбой, прежде чем они смогли подойти к технологии его укрощения. Для этого понадобилось не менее двухсот лет.
Мы сможем в полной мере постигнуть значение достижений Фибоначчи, только обратив свой взгляд к эпохе, предшествующей его рассуждениям о том, как выразить различие между 10 и 100. Даже в ней мы найдем несколько замечательных новаторов. Примитивный человек вроде неандертальца умел считать, но необходимость в счете возникала не часто. Он отмечал прошедшие дни зарубками на камнях или стволах деревьев или выкладывал дорожку камней, фиксируя число убитых животных. Время дня определялось по солнцу, и разница между пятью минутами и получасом вряд ли имела значение. Первые систематические попытки измерений и счета были предприняты за несколько тысячелетий до Рождества Христова3. Это началось, когда люди стали расселяться, чтобы выращивать хлеб, по долинам таких крупных рек, как Тигр и Евфрат, Нил, Инд, Янцзы, Миссисипи и Амазонка. Реки скоро превратились в торговые пути, по которым предприимчивые люди выходили к океанам и морям. Чтобы путешествовать на всё большие и большие расстояния, понадобились календарь, навигация и география, а они потребовали еще более точных расчетов. Жрецы были первыми астрономами, а от астрономии произошла математика. Когда люди заметили, что зарубок на деревьях и камнях и дорожек из них уже недостаточно для решения новых задач, они стали группировать числа в десятки и двадцатки, которые было легко считать по пальцам на руках и ногах. Хотя египтяне стали мастерами в астрономии и предсказании разливов и спада воды в Ниле, им, по-видимому, никогда не приходило в голову вмешиваться в подобные процессы и оказывать влияние на будущий ход событий. Их интеллекту, в котором доминировали обычаи, привычка к повторению годового цикла перемен и уважение к прошлому, были чужды перемены и активное отношение к будущему. Около 450 года до Рождества Христова греки изобрели буквенную систему счисления, которая использовала 24 буквы греческого алфавита и три буквы, которые впоследствии вышли из употребления. Каждому числу от 1 до 9 соответствовала буква, а числа, кратные десяти, имели свои буквы. Например, символ я (пи) как первая буква греческого слова tievte (пента), что означало 'пять', представлял 5; 8 (дельта), первая буква от 8£ха (дека), что означало 'десять', представляла 10; а (альфа), первая буква алфавита, представляла 1, и р (ро) представляла 100. Таким образом, 115 писалось как ро-дека-пента, или рбтг. Евреи, пусть и семиты, а не индоевропейцы, использовали такую же буквенно-цифровую систему счисления4. Хотя относительное удобство этих буквочисел помогало людям строить сложные сооружения, путешествовать на большие расстояния и точнее фиксировать время, такая система счисления накладывала серьезные ограничения. Для сложения, вычитания, умножения и деления буквы можно использовать только с большим трудом, а считать в уме практически невозможно. Эти заместители чисел пригодны только для записи результатов вычислений, выполненных другими методами, чаще всего с помощью счетов. Счеты — древнейшее вычислительное устройство в истории — были незаменимы при выполнении расчетов, пока между 1000-м и 1200 годами после Рождества Христова на сцену не выступила индо-арабская цифровая система счисления. На счетах каждому разряду числа соответствовали колонки из десяти костей; когда при сложении, например, в соответствующей колонке получалось число, большее десяти, сдвигалась фишка на следующей колонке, а на первой фиксировалось превышение результатом десяти, и т.д. Наши выражения «один в уме» и «три сверху» ведут свое происхождение от счетов5.
Несмотря на ограниченные возможности этих ранних форм математики, они сделали возможным значительное развитие знания, в частности в геометрии — языке фигур — и ее многочисленных приложениях в астрономии, навигации и механике. Наиболее впечатляющих результатов добились греки и их коллеги в Александрии. Только Библия выдержала больше изданий и напечатана в большем количестве экземпляров, чем самая знаменитая книга Евклида «Начала» («Elements»). Однако не научные открытия представляются нам самым главным достижением греков. В конце концов, храмовые жрецы Египта и Вавилона неплохо изучили геометрию задолго до Евклида, и даже знаменитая теорема Пифагора — квадрат гипотенузы прямоугольного треугольника равен сумме квадратов катетов — использовалась в долине Тигра и Евфрата за 2000 лет до Рождества Христова. Уникальной чертой греческого духа была приверженность к доказательствам. «Почему?» было для них важнее, чем «что?». Они смогли заново сформулировать самые сложные вопросы потому, что их цивилизация была первой в истории, относительно свободной от смирительной рубашки всемогущего жреческого сословия. Эти же обстоятельства сделали греков первыми в мире путешественниками и колонизаторами, превратившими бассейн Средиземного моря в сферу своих интересов. Будучи в большей степени гражданами мира, греки отвергли простые и ясные заветы, оставленные им предшествующими обществами. Их не интересовали образцы; они искали универсальные понятия, применимые везде, в любом случае. Например, с помощью простого измерения можно убедиться, что квадрат гипотенузы прямоугольного треугольника равен сумме квадратов катетов. Но греков интересует, почему это так во всех прямоугольных треугольниках, больших и малых, без единого исключения. Именно с этого времени доказательство, а не вычисление стало доминировать в математической науке. Эта радикальная особенность древнегреческой методологии постижения мира заставляет нас еще раз задать вопрос — как случилось, что греки не открыли законы вероятности, вычислительные методы и даже простую алгебру. По-видимому, это объясняется тем, что, несмотря на все свои достижения, они зависели от неудобной системы счисления, использующей буквы вместо цифр. Тем же недостатком страдала и римская система, в которой для изображения, к примеру, числа 9 нужны две буквы и нельзя написать 32 как III и II, потому что было бы неясно, имеется в виду 32, 302, 3020 или еще большее число, представляемое комбинацией 3, 2 и 0. Такая система непригодна для вычислений. Открытие более совершенной системы счисления задержалось примерно до 500 года после Рождества Христова, когда индусы изобрели цифры, которыми мы сегодня пользуемся. Кто придумал это удивительное новшество и какие обстоятельства привели к его распространению по всему Индийскому полуострову, остается тайной. Арабы впервые познакомились с новыми числами примерно через девяносто лет после того, как Мухаммед в 622 году основал ислам и его последователи, объединившись в могучую нацию, проникли в Индию и за ее пределы.
Новая система счисления пробудила интеллектуальную активность в странах к западу от Индии. Багдад, уже тогда бывший средоточием арабской культуры, стал центром математических исследований, и халифы приглашали еврейских ученых для перевода трудов таких выдающихся математиков, как Птолемей и Евклид. Математическая литература получила широкое распространение в арабской империи и около IX или X века дошла до Испании. Вообще говоря, если уж быть точными, на Западе был один человек, предложивший цифровую систему счисления еще за 200 лет до индусов. Около 250 года после Рождества Христова в Александрии математик по имени Диофант написал трактат, в котором доказывал выгодность замены буквенной системы счисления настоящими числами6. О самом Диофанте мало что известно, но то немногое, что мы знаем, поразительно. Историк математики Герберт Уоррен Тернбулл (Turnbull) приводит посвященную ему греческую эпиграмму, в которой говорится: «Его детство длилось Ve его жизни; борода выросла у него на Vi2 позднее; на i/7 после этого он женился, и через пять лет у него родился сын, который прожил вдвое меньше отца, а отец пережил сына на четыре года». В каком возрасте умер Диофант?7 Ответ на этот вопрос любители алгебры могут найти в конце главы. Диофанту принадлежит далеко ведущая идея алгебраической символики — использование символов вместо чисел; ему, правда, не удалось воспользоваться ею в полной мере. Он сетует, что «невозможно решение абсурдного уравнения 4 = 4л; + 20»8. Невозможно? Абсурдное уравнение? Уравнение приводит к отрицательному значению: д: = -4. Без понятия ноля, которого Диофант не знал, понятие отрицательного числа логически невозможно. Замечательные новшества Диофанта, кажется, были проигнорированы последующими поколениями. Прошло полторы тысячи лет, пока его работы были замечены и должным образом оценены: его трактат сыграл центральную роль в расцвете алгебры в XVII веке. Всем известные сегодня линейные алгебраические уравнения ви-да а + Ъх = с носят его имя.
Главным изобретением индо-арабской системы счисления явилось понятие ноля — sunya, как его называли индусы, или cifr по-арабски9().Слово дошло до нас как cipher, что означает 'пусто' и относится к пустой линейке на счетах 3.(Русское слово цифра тоже арабского происхождения).
Людям, использующим ряды камешков для подсчета убитых животных, прошедших дней или пройденного пути, освоить понятие ноля было крайне трудно. Для таких подсчетов ноль не нужен. Как отмечает английский философ XX века Альфред Норт Уайтхед (Whitehead),
относительно ноля следует заметить, что в повседневной жизни мы этим понятием не пользуемся. Никому не придет в голову купить ноль рыбы. В известном смысле ноль — это самое деликатное из всех числительных, и потребность в нем возникает у нас только на более высоком уровне мышления10
Слова Уайтхеда о «более высоком уровне мышления» указывают на то, что понятие ноля расчистило путь чему-то более значительному, чем совершенствование способов счета и вычислений. Уже Диофант осознал, что совершенная система счисления должна обеспечить возможность использования математики в развитии и абстрактных наук, и техники измерений. Ноль раздвинул границы познания и прогресса. Заслуживают внимания два аспекта развития системы счисления, обусловленных появлением ноля. Во-первых, люди смогли обходиться только десятью символами от 0 до 9 для записи с их помощью любых чисел и выполнения всевозможных вычислений. Во-вторых, последовательность чисел типа 1, 10, 100 показывает, что следующим числом в последовательности является 1000. Ноль, прояснив систему счисления, довел ее до полной прозрачности. Возьмите римские числа I, X и С или V, L и D и попробуйте сказать, каким должно быть следующее число в этой последовательности!
Первая известная нам арабская книга по арифметике была написана ал-Хорезми — математиком, жившим около 825 года, примерно за четыреста лет до Фибоначчи11. Хотя те немногие, кто использовал его работу, вероятно, кое-что слышали о нем, большинству из нас он известен косвенно. Попробуйте быстро произнести «ал-Хорезми». Вы услышите слово «алгоритм», что значит «правило вычислений»12. Именно ал-Хорезми был первым математиком, установившим правила сложения, вычитания, умножения и деления с новыми индийскими цифрами. В другом своем трактате «Hisab al-jabr w'almuqabalah», или «Книге о восстановлении и противопоставлении», он описывает процесс решения алгебраических уравнений. От слова al-jabr произошло слово алгебра, или наука об уравнениях13. Одним из самых значительных и, уж конечно, самым знаменитым арабским математиком древности был Омар Хайям, живший приблизительно с 1050-го по ИЗО год и известный как автор собрания стихов под названием «Рубайят»14. (В русском переводе В. Державина «Рубайят» содержится 488 четверостиший, см.: Омар Хайям. Рубайят. Душанбе: Изд-во «Ирфон», 1965. — Примеч. переводчика.). Его знаменитый сборник из 75 четверостиший* (слово рубайят определяет поэтическую форму) во времена королевы Виктории был переведен на английский поэтом Эдвардом Фитцджералдом. В этой тоненькой книжице больше воспеваются вино и мимолетность человеческого существования, чем наука и математика. Например, под номером 27 читаем: Думал, казий и муфтий мне смогут помочь Верный путь обрести, скорбный дух превозмочь, Но, пожив, убедился, что эти всезнайки Знают, друг мой, как я, так же мало точь-в-точь*. (Перевод А. Кушнера. — Примеч. переводчика.) Как сообщает Фитцджералд, в юности у Омара Хайяма было двое друзей, столь же блистательных, как и он сам: Низам ал-Мунк и Хасан ал-Сабах. Однажды Хасан предложил своим друзьям поклясться, что, если кому-нибудь из троих суждено достичь богатства и могущества, «тот, кому выпадет удача, не станет стремиться к преимуществу перед двумя другими и поделит ее на троих». Они дали клятву, а через какое-то время Низам стал визирем султана. Друзья разыскали его и напомнили про клятву, которую он выполнил, как обещал. Хасан потребовал и получил место в правительстве, но, неудовлетворенный своим положением, оставил его, чтобы стать потом главой секты фанатиков, терроризировавшей весь мусульманский мир. Много лет спустя он организовал предательское убийство своего друга Низама. Омар Хайям не просил ни чинов, ни титулов. «Величайшая милость, которую ты можешь оказать мне, — сказал он Низаму, — это позволить мне жить незаметно под сенью твоей славы, углубляясь в науку и молясь о ниспослании тебе Аллахом долгих лет жизни и преуспеяния». Хотя султан любил Омара Хайяма и был благосклонен к нему, «смелое эпикурейство мыслей и высказываний Омара вызывали в его время косые взгляды соотечественников». Омар Хайям использовал новую систему счисления для совершенствования созданного усилиями ал-Хорезми языка вычислений, послужившего основой нового, более сложного языка алгебры. Кроме того, он использовал математические методы обработки астрономических наблюдений для реформирования календаря и построения числового треугольника, облегчающего вычисление квадратов, кубов и высших степеней; этот треугольник позднее был использован в XVII веке французским математиком Блезом Паскалем, одним из создателей теории выбора, оценки шансов и вероятностей. Впечатляющие достижения арабов лишний раз показывают, как далеко может зайти и все же застрять на пороге логического завершения фундаментальная идея. Почему арабы со своими выдающимися математическими достижениями не смогли приблизиться к созданию теории вероятностей и управления риском? Я полагаю, это обусловлено их образом жизни. Кто определяет наше будущее: судьба, боги или мы сами? Идея управления риском всплывет только тогда, когда люди поверят, что они обладают некоторой степенью свободы. Подобно грекам и ранним христианам, склонные к фатализму мусульмане еще не были готовы к этому прыжку. Около 1000 года новая система счисления преподавалась в мавританских университетах в Испании и еще кое-где, а также сарацинами на Сицилии. Сицилийская монета норманнской чеканки, датированная «1134 Anno Domini»* (После Рождества Христова. — Примеч. переводчика.) — первый известный образец использования системы в действии. Однако широкого распространения новые числа не получили вплоть до XIII века. Несмотря на покровительство, оказанное книге Фибоначчи императором Фридрихом, и широкую известность, которую она получила в Европе, введение индо-арабской системы счисления вызывало сильное и ожесточенное неприятие до начала XVI века. И это можно понять. Многовековая история учит, что всегда находятся силы, которые встречают в штыки любое изменение; новое всегда с трудом пробивает себе дорогу. Но была и другая причина, куда более серьезная: с новыми числами плутовать было легче, чем со старыми. Превращение 0 в 6 или 9 казалось заманчиво легким, а 1 могла без труда превратиться в 4, 6, 7, 9 (одна из причин, почему европейцы пишут 7 как 7). Даже после того, как новые числа уже утвердились в Италии, где образование было на высоком уровне, в 1229 году во Флоренции был издан эдикт, запрещающий банкирам использование «языческих» символов. В результате многие желающие изучить новую систему были вынуждены выдавать себя за мусульман15. Изобретение в середине XV века книгопечатания с наборным шрифтом ускорило окончательный переход к использованию новых чисел. Теперь мошеннические подделки больше не проходили, а нелепые сложности римских чисел стали очевидны каждому. Этот переворот привел к резкой активизации коммерческой деятельности. С тех пор таблицы умножения ал-Хорезми стали предметом изучения во всех школах. И наконец, с первыми намеками на проникновение в тайны вероятностных закономерностей повсеместно усилился интерес к играм.
Здесь приводится алгебраическое решение эпиграммы о Диофанте. Приняв за х его возраст в день смерти, имеем: х х х. х х + — + — + — + 5 + — + 4. Значит, Диофант умер в возрасте 84 лет.
Глава 3 Игроки Ренессанса Пьеро делла Франческа, написавший Деву Марию («Мадонна с Младенцем и святыми»), жил с 1420-го по 1492 год, на двести с лишним лет позже Фибоначчи. Время его жизни совпало с расцветом итальянского Ренессанса, и разрыв между новым духом XV столетия и обветшавшим к тому времени духом Средневековья нашел яркое отражение в его творчестве. На его полотнах фигуры, даже фигура Девы, воплощают земную человеческую жизнь. Они лишены нимбов, твердо стоят на земле, каждая несет на себе печать индивидуальности и занимает свое место в трехмерном пространстве. Хотя предполагается, что все они собрались, чтобы приветствовать Святую Деву и младенца Христа, кажется, что большинство из них занято чем-то своим. Тени, создающие в готической архитектуре атмосферу таинственности, здесь призваны подчеркнуть весомость фактуры и протяженность обрамляющего фигуры пространства. Яйцо кажется подвешенным над головой Девы. Более внимательное изучение картины заставляет задуматься, на чем, собственно, подвешен этот небесный символ плодовитости. И почему эти земные, хотя и благочестивые мужчины и женщины не замечают эту странную штуку, зависшую над ними? Греческая философия перевернута вверх ногами. Теперь тайна перенесена на небеса. На земле мужчины и женщины ведут свободную человеческую жизнь. Эти люди уважают все связанное с божественными проявлениями, но ни в коем случае не подавлены ими — черта, вновь и вновь воспроизводимая в искусстве Ренессанса. Чарующая статуя Давида работы Донателло была одной из первых обнаженных мужских скульптур со времен классических Греции и Рима; великий герой и поэт Ветхого Завета, прекрасный в своей юношеской наготе, стоит перед нами без тени стыдливости, с головой Голиафа в ногах. Большой собор Брунеллески, как и кафедральный собор во Флоренции, с их четко вылепленными массами и строгим интерьером демонстрируют, как религия буквально низведена на землю. Ренессанс был временем открытий. В год смерти Пьеро Колумб отправился искать путь в Индию; вскоре появилась книга Коперника, радикально изменившая взгляд людей на небеса. Его открытия потребовали высокого уровня математического искусства, которое в течение XVI века ознаменовалось впечатляющими достижениями, особенно в Италии. Следом за изобретением примерно в 1450 году книгопечатания с наборным шрифтом произведения многих классиков математической науки были переведены с латыни на итальянский, опубликованы на латыни или на языках других народов Европы. Математики состязались в бурных публичных диспутах о решении сложных алгебраических уравнений, и публика восторженно приветствовала своих фаворитов. Этот интерес был вызван опубликованной в 1494 году замечательной книгой францисканского монаха по имени Лука Пацциоли1. Пацциоли родился около 1445 года на родине Пьеро делла Франческа в Борго-Сан-Сеполькро. Хотя семья понуждала мальчика готовиться к карьере торговца, Пьеро занимался с ним чтением, рисованием, историей и приучил пользоваться знаменитой библиотекой в соседнем замке Урбино. Полученные здесь знания заложили основу будущей известности Пацциоли как математика. В двадцатилетнем возрасте он получил в Венеции место учителя сына богатого купца, стал посещать публичные лекции по философии и теологии и продолжил изучение математики с частным преподавателем. Будучи способным учеником, он еще в Венеции опубликовал свою первую работу по математике. Одновременно он изучал архитектуру и военное искусство под руководством своего дяди Бенедетто, офицера на службе Венецианской республики. В 1470 году Пацциоли переселился в Рим для продолжения своего образования и в двадцатисемилетнем возрасте стал францисканским монахом. Однако его научные занятия не прервались. Он преподавал в Перудже, Риме, Неаполе, Пизе и Венеции, пока в 1496 году не занял место профессора математики в Милане. Десятью годами раньше ему уже была присвоена степень магистра, соответствующая нынешней степени доктора*(В России — кандидата наук. — Примеч. науч. редактора.). Главный труд Пацциоли «Summa de arithmetic, geometria et proportionality» («Книга об арифметике, геометрии и пропорциях»; самые серьезные академические работы в то время еще писали на латыни) появился в 1494 году. В ней Пацциоли признаёт, что многим обязан «Liber Abaci» Фибоначчи, появившейся тремя столетиями раньше. В «Summa», написанной во славу «величайшей абстракции и утонченности математики», излагаются основы алгебры и содержатся таблицы умножения до 60 х 60 — весьма полезная вещь для времени, когда с помощью книгопечатания получила широкое распространение новая система счисления. Один из наиболее интересных разделов книги посвящен двойной бухгалтерии. Она не была изобретением Пацциоли, хотя он и занимался ею не один год. Понятие двойной бухгалтерии встречается в «Liber Abaci» Фибоначчи и используется в опубликованной около 1305 года в Лондоне книге лондонского филиала некой итальянской фирмы. Каково бы ни было его происхождение, это революционное новшество в методике бухгалтерских расчетов имело серьезные экономические последствия, сравнимые с изобретением паровой машины тремя столетиями позже. В Милане Пацциоли познакомился с Леонардо да Винчи, ставшим его близким другом. Пацциоли был поражен талантом Леонардо и восхищался его «бесценной работой о движении в пространстве, столкновениях, весах и всех силах»2. У них, наверно, было много общего, потому что Пацциоли интересовали взаимосвязи между математикой и искусством. Однажды он заметил, что, «если вы говорите, что музыка услаждает одно из наших природных чувств — слух... [перспектива] делает то же со зрением, которое имеет гораздо большую цену, потому что является входной дверью интеллекта». Леонардо был мало знаком с математикой до встречи с Пацциоли, хотя имел интуитивное понимание пропорций и хорошее геометрическое воображение. Его записные книжки и раньше были заполнены изображениями прямоугольников и кругов, но Пацциоли побудил его к математическому осмыслению понятий, ранее используемых интуитивно. Мартин Кемп, один из биографов Леонардо, отмечает, что Пацциоли «стимулировал внезапно появившиеся у Леонардо математические амбиции, обусловившие переориентацию его интересов в направлении, на котором ни один из ученых современников ему не сопутствовал». Леонардо отблагодарил Пацциоли, снабдив рисунками написанную им большую книгу «De Divine Proportione» («Божественная пропорция»), которая появилась в двух прекрасно оформленных манускриптах в 1498 году. Ее печатное издание вышло в свет в 1509 году. Леонардо имел экземпляр «Summa» и, должно быть, прилежно проштудировал его. Его записные книжки свидетельствуют о повторяющихся попытках освоить умножение и дроби в применении к использованию пропорций. В одном месте он напоминает себе, что должен «изучить умножение корней по мастеру Луке». По нынешним меркам математические познания Леонардо соответствовали бы уровню третьего арифметического класса. Тот факт, что у таких гениев Ренессанса, как Леонардо, было столько трудностей с элементарной арифметикой, дает представление о состоянии математических знаний в конце XV века. Каким образом математики нашли в себе силы с этих позиций сделать первые шаги к созданию методов измерения риска и контроля за ним?
Сам Пацциоли чувствовал, какие огромные возможности таятся в волшебстве чисел. В тексте «Summa» он предложил следующую задачу: А и В играют в balla* (Игра в мяч. — Примеч. переводчика.). Они договорились играть, пока один из них не выиграет шесть конов. На самом деле игра прекратилась, когда А выиграл пять, а В три кона. Как поделить банк?3 В течение XVI и XVII столетий математики вновь и вновь обращались к этой головоломке. Она имела много вариаций, но всегда вопрос сводился к одному: как поделить банк в неоконченной игре? Предлагались разные ответы, разгорались горячие споры. Головоломка, получившая известность как задача об очках, имела более глубокий смысл, чем кажется на первый взгляд. Ее решение ознаменовало начало систематического анализа вероятности — измерения нашего знания о том, что что-то должно произойти. Оно приводит нас на порог квантификации риска. Получив представление о том, каким могучим барьером на пути исследования тайн теории вероятностей были предрассудки Средневековья, интересно снова вернуться к вопросу, почему греки и даже римляне не интересовались задачами, подобными головоломке Пацциоли. Вообще-то греки понимали, что в будущем может произойти больше вещей, чем произойдет на самом деле. Они отмечали, что естественные науки — это, используя терминологию Платона, «науки о возможном». Аристотель в «De Caelo» говорил: «Добиться успеха во многих вещах или много раз трудно; например, выбросить некую комбинацию в кости десять тысяч раз подряд было бы невозможно, но сделать это один или два раза сравнительно легко»4. Это подтверждалось простыми наблюдениями. Но следует заметить, что правила, по которым греки и римляне играли в случайные игры, в наше время показались бы весьма нелепыми. Это тем более странно, что в античном мире такие игры были очень популярны (грекам уже были известны шестигранные кости) и являлись настоящей лабораторией для изучения шансов и вероятностей. Рассмотрим игры с применением таранных костей. В отличие от позднейших кубических костей они продолговатые, с двумя узкими и двумя широкими поверхностями. В играх обычно бросали сразу четыре кости. Шансы, что кость выпадет широкой стороной, конечно, выше, чем узкой. Поэтому было бы естественно ожидать, что узкая сторона должна приносить больше очков, чем широкая. Но сумма очков, приносимых менее вероятными узкими сторонами — 1 на одной кости и 6 на другой, — приравнивалась тому, что приносили более вероятные широкие стороны, — 3 и 4. Результат же, называемый «Венера», когда на вас смотрят все возможные игровые грани костей — 1, 3, 4, 6, — приносил максимум очков, хотя столь же вероятны комбинации 6, 6, 6, 6 или 1, 1, 1, 1, приносившие по правилам меньше очков5. Кроме того, хотя было очевидно, что длинные серии выигрышей или проигрышей менее вероятны, чем короткие, эти ожидания носили не количественный, а качественный характер: Аристотель говорил, что «...сделать это один или два раза сравнительно легко»6. И хотя в эти игры играли повсеместно и с диким азартом, никому не приходило в голову подсчитывать шансы. Надо полагать, дело было в том, что греки вообще не проявляли интереса к экспериментированию; их занимали только теории и доказательства. Они, кажется, никогда не обсуждали возможность воспроизведения какого-либо явления достаточное для доказательства гипотезы число раз, видимо, потому, что им была чужда мысль об упорядоченности событий на земле. Точность считалась монополией богов.
В отличие от античности во времена Ренессанса каждый, от ученого до изобретателя, от художника до архитектора, испытывал зуд исследований, экспериментирования и демонстрации результатов опыта. В этой интеллектуальной атмосфере кто-то из игроков должен был обратить внимание на регулярности, проявляющиеся при так называемой игре в длинную. Такой игрок появился в XVI веке. Им оказался лекарь по имени Джироламо Кардано. Одной только репутации Кардано как азартного игрока, пытавшегося осмыслить закономерности игры, достаточно для упоминания его имени в истории освоения риска, но он проявил выдающиеся таланты и во многих других областях. Удивительно, что в наше время он сравнительно мало известен. Он был олицетворением Ренессанса7. Кардано родился в Милане около 1500 года и умер в 1571 году. Он был современником Бенвенуто Челлини и, подобно Челлини, одним из первых знаменитостей, оставивших автобиографию. Свою книгу он назвал «De Vita Propria Liber» («Книга моей жизни»), и что это была за жизнь! Поистине, его любознательность была сильнее его самого. Характерно увлечение, с которым он, описывая собственную жизнь, обсуждает четыре выдающихся достижения своего времени: вступление в новую эру географических открытий, познакомивших европейцев с двумя третями земной поверхности, о которых древние ничего не знали, изобретение огнестрельного оружия, компаса и книгопечатания с использованием набора. Кардано был худым, с длинной шеей, тяжелой нижней губой, бородавкой над глазом и таким громким голосом, что вызывал раздражение даже у друзей. По его собственному признанию, он страдал диареей, грыжей, болезнью почек, тахикардией и даже воспалением соска. Не без рисовки он пишет о себе: «Я был горяч, простодушен и падок на женщин», а также «хитер, силен, саркастичен, прилежен, дерзок, печален, вероломен, склонен к чародейству и колдовству, жалок, злобен, похотлив, непристоен, лжив, подобострастен, старчески болтлив». Кардано был игрок из игроков. Он признавался в «неодолимой тяге к игорному столу и костям... Долгие годы... я играл не время от времени, но, стыдно сказать, каждый день». Он играл во всё — от костей и карт до шахмат. Он зашел так далеко, что признавал благотворность игры: «...в периоды потрясений и бедствий... я находил утешение в постоянной игре в кости». Кардано терпеть не мог непрошеных советчиков и все знал о шулерских проделках, в частности остерегался игроков, «которые натирали карты мылом, чтобы они легко скользили и были послушны в руках». Анализируя в своей книге вероятностные закономерности игры в кости, он не забывал осторожно оговориться: «...если игра ведется честно». Тем не менее ему приходилось проигрывать крупно и достаточно часто, чтобы заключить, что «лучший из возможных выигрышей — это отказ от игры». Он, кажется, первым в истории взялся за серьезный анализ случайных игр. Кардано был не только игроком и математиком «от случая к случаю», но и самым знаменитым врачом своего времени — его настойчиво стремились заполучить многие европейские дворы и Ватикан. Однако он не терпел придворные интриги и отклонял все высокие приглашения. Ему принадлежит первое клиническое описание симптомов тифа, он писал о сифилисе и предложил новый метод операции грыжи. Он говорил, что «человек есть не что иное, как дух; если дух не в порядке, все плохо, если же он здоров, все остальное лечится просто», и был одним из первых пропагандистов купания и душа. Когда его в 1552 году пригласили в Эдинбург для лечения архиепископа Шотландского от астмы, он на основе своих знаний об аллергии порекомендовал пациенту набить перину не перьями и пухом, а некрученым шелком, заменить кожаные наволочки полотняными, а причесываться гребнем из слоновой кости. Перед отъездом из Милана в Эдинбург ему предложили за услуги ежедневную плату в размере десяти золотых крон; когда же через сорок дней он покидал Эдинбург, благодарный пациент вручил ему 1400 крон, не считая дорогих подарков. Кажется, Кардано был очень занятым человеком. Он опубликовал 131 печатную работу, сжег, по его словам, еще 170, а после смерти оставил 111 неопубликованных рукописей. В его писаниях затрагиваются самые разные вопросы, касающиеся математики, астрономии, физики, состава мочи, зубов, жизни Девы Марии, гороскопа Иисуса Христа, морали, аморальности, жизни Нерона, музыки, снов. Его «De Subtilitate Rerum» («О сущности вещей») стала тогдашним бестселлером и выдержала шесть изданий подряд; в ней обсуждаются научные и философские вопросы наряду с суевериями и загадочными историями. У него было два сына, заставивших его испытать много горя. В «De Vita» Кардано пишет о старшем сыне Джамбаттисте, своем любимце, что он был «глух на правое ухо, с маленькими бесцветными беспокойными глазами. На левой ноге у него было два пальца; третий и четвертый, если я не ошибаюсь, срослись с большим, образуя гусиную лапу. Он был немного горбат...». Джамбаттиста женился на девушке с подпорченной репутацией, которая была ему неверна; по ее признанию, муж не был отцом ни одного из ее троих детей. После трех лет семейной жизни, ставшей для него адом, Джамбаттиста приказал своему слуге приготовить пирог с мышьяком и дал его жене, которая тут же умерла. Кардано сделал все для спасения сына, но Джамбаттиста уже после освобождения из тюрьмы признался в убийстве жены. По пути к месту казни, где его обезглавили, палачи отрубили ему левую руку и пытали его. Младший сын, Альдр, постоянно обкрадывал своего отца и время от времени попадал в тюрьму, где побывал не менее восьми раз. У Кардано был молодой протеже, Лодовико Феррари, блестящий математик, какое-то время служивший секретарем у кардинала Мантуи. В возрасте 14 лет Феррари поселился у Кардано и скрашивал его старость, называя себя «творением Кардано». Он защищал доказательства Кардано в нескольких диспутах с другими математиками,
|
|||||
Последнее изменение этой страницы: 2016-06-22; просмотров: 365; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.12.161.151 (0.015 с.) |