Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Естественные источники радиации



Основную часть облучения население земного шара получает от естественных источников радиации (рис. 3.1). Большинство из них таковы, что избежать облучения от них совершенно невозможно. На протяжении всей истории существования Земли разные виды излучения падают на поверхность Земли из космоса и поступают от радиоактивных веществ, находящихся в земной коре. Человек подвергается облучению двумя способами. Радиоактивные вещества могут находиться вне организма и облучать его снаружи; в этом случае говорят о внешнем облучении. Или же они могут оказаться в воздухе, которым дышит человек, в пище или в воде и попасть внутрь организма. Такой способ облучения называют внутренним.

Облучению от естественных источников радиации подвергается любой житель Земли, однако одни из них получают большие дозы, чем другие. Это зависит, в частности, от того, где они живут. Уровень радиации в некоторых местах земного шара, там, где залегают особенно радиоактивные породы, оказывается значительно выше среднего, а в других местах - соответственно ниже. Доза облучения зависит также от образа жизни людей. Применение некоторых строительных материалов, использование газа для приготовления пищи, открытых угольных жаровень, герметизация помещений и даже полеты на самолетах - все это увеличивает уровень облучения за счет естественных источников радиации.

Земные источники радиации в сумме ответственны за большую часть облучения, которому подвергается человек за счет естественной радиации. В среднем они обеспечивают более 5/6 годовой эффективной эквивалентной дозы, получаемой населением, в основном вследствие внутреннего облучения. Остальную часть вносят космические лучи, главным образом путем внешнего облучения (рис. 3.2).

В этой главе мы рассмотрим вначале данные о внешнем облучении от источников космического и земного происхождения.

Затем остановимся на внутреннем облучении, причем особое внимание уделим радону - радиоактивному газу, который вносит самый большой вклад в среднюю дозу облучения населения из всех источников естественной радиации. Наконец, в ней будут рассмотрены некоторые стороны деятельности человека, в том числе использование угля и удобрений, которые способствуют извлечению радиоактивных веществ из земной коры и увеличивают уровень облучения людей от естественных источников радиации.

Космические лучи

Радиационный фон, создаваемый космическими лучами, дает чуть меньше половины внешнего облучения, получаемого населением от естественных источников радиации (рис. 3.2). Космические лучи в основном приходят к нам из глубин Вселенной, но некоторая их часть рождается на Солнце во время солнечных вспышек. Космические лучи могут достигать поверхности Земли или взаимодействовать с ее атмосферой, порождая вторичное излучение и приводя к образованию различных радионуклидов.

Нет такого места на Земле, куда бы не падал этот невидимый космический душ. Но одни участки земной поверхности более подвержены его действию, чем другие. Северный и Южный полюсы получают больше радиации, чем экваториальные области, из-за наличия у Земли магнитного поля, отклоняющего заряженные частицы (из которых в основном и состоят космические лучи). Существеннее, однако, то, что уровень облучения растет с высотой, поскольку при этом над нами остается все меньше воздуха, играющего роль защитного экрана.

 

Возрастание с высотой мощности эквивалентной дозы облучения за счет космических лучей (изменение высоты представлено в логарифмическом масштабе).   Люди, живущие на уровне моря, получают в среднем из-за космических лучей эффективную эквивалентную дозу около 300микрозивертов (миллионных долей зиверта) в год; для людей же, живущих выше 2000 м над уровнем моря, это величина в несколько раз больше. Еще более интенсивному, хотя иотносительно непродолжительному облучению, подвергаются экипажи и пассажиры самолетов. При подъеме с высоты 4000м (максимальная высота, на которой расположены человеческие поселения: деревни шерпов на склонах Эвереста) до 12000 м (максимальная высота полета трансконтинентальных авиалайнеров) уровень облучения за счет космических лучей возрастает примерно в 25 раз и продолжает расти при дальнейшем увеличении высоты до 20000 м (максимальная высота полета сверхзвуковых реактивных самолетов) и выше (рис. 3.4). При перелете из Нью-Йорка в Париж пассажир обычного турбореактивного самолета получает дозу около 50 мкЗв, а пассажир сверхзвукового самолета – на 20% меньше, хотя подвергается более интенсивному облучению. Это объясняется тем, что во втором случае перелет занимает гораздо меньше времени (рис. 3.3). Всего за счет использования воздушного транспорта человечество получает в год коллективную эффективную эквивалентную дозу около 2000 чел-Зв.

Земная радиация

Основные радиоактивные изотопы, встречающиеся в горных породах Земли, - это калий-40, рубидий-87 и члены двух радиоактивных семейств, берущих начало соответственно от урана-238 и тория-232-долгоживущих изотопов, включившихся в состав Земли с самого ее рождения.

Разумеется, уровни земной радиации неодинаковы для разных мест земного шара и зависят от концентрации радионуклидов в том или ином участке земной коры. В местах проживания основной массы населения они примерно одного порядка. Так, согласно исследованиям, проведенным во Франции, ФРГ, Италии, Японии и США, примерно 95% населения этих стран живет в местах, где мощность дозы облучения в среднем составляет от 0,3 до 0,6 миллизиверта (тысячных зиверта) в год. Но некоторые группы населения получают значительно большие дозы облучения: около 3% получает в среднем 1 миллизиверт в год, а около 1,5% -более 1,4 миллизиверта в год. Есть, однако, такие места, где уровни земной радиации намного выше (рис. 3.5).

Неподалеку от города Посус-ди-Кал-дас в Бразилии, расположенного в 200 км к северу от Сан-Паулу, есть небольшая возвышенность. Как оказалось, здесь уровень радиации в 800 раз превосходит средний и достигает 250 миллизивертов в год. По каким-то причинам возвышенность оказалась необитаемой. Однако лишь чуть меньшие уровни радиации были зарегистрированы на морском курорте, расположенном в 600 км к востоку от этой возвышенности.

Гуарапари - небольшой город с населением 12000 человек-каждое лето становится местом отдыха примерно 30000 курортников. На отдельных участках его пляжей зарегистрирован уровень радиации 175 миллизивертов в год. Радиация на улицах города оказалась намного ниже - от 8 до 15 миллизивертов в год, - но все же значительно превышала средний уровень. Сходная ситуация наблюдается в рыбацкой деревушке Меаипе, расположенной в 50 км к югу от Гуарапари. Оба населенных пункта стоят на песках, богатых торием.

В другой части света, на юго-западе Индии, 70000 человек живут на узкой прибрежной полосе длиной 55 км, вдоль которой также тянутся пески, богатые торием. Исследования, охватившие 8513 человек из числа проживающих на этой территории, показали, что данная группа лиц получает в среднем 3,8 миллизиверта в год на человека. Из них более 500 человек получают свыше 8,7 миллизиверта в год. Около шестидесяти получают годовую дозу, превышающую 17 миллизивертов, что в 50 раз больше средней годовой дозы внешнего облучения от земных источников радиации.

Эти территории в Бразилии и Индии являются наиболее хорошо изученными «горячими точками» нашей планеты. Но в Иране, например в районе городка Рам-сер, где бьют ключи, богатые радием, были зарегистрированы уровни радиации до 400 миллизивертов в год. Известны и другие места на земном шаре с высоким уровнем радиации, например во Франции, Нигерии, на Мадагаскаре.

По подсчетам НКДАР ООН средняя эффективная эквивалентная доза внешнего облучения, которую человек получает за год от земных источников естественной радиации, составляет примерно 350 микрозивертов, т.е. чуть больше средней индивидуальной дозы облучения из-за радиационного фона, создаваемого космическими лучами на уровне моря.

Внутреннее облучение

В среднем примерно 2/3 эффективной эквивалентной дозы облучения, которую человек получает от естественных источников радиации, поступает от радиоактивных веществ, попавших в организм с пищей, водой и воздухом.

Совсем небольшая часть этой дозы приходится на радиоактивные изотопы типа углерода-14 и трития, которые образуются под воздействием космической радиации. Все остальное поступает от источников земного происхождения. В среднем человек получает около 180 микрозивертов в год за счет калия-40, который усваивается организмом вместе с нерадиоактивными изотопами калия, необходимыми для жизнедеятельности организма. Однако значительно большую дозу внутреннего облучения человек получает от нуклидов радиоактивного ряда урана-238 и в меньшей степени от радионуклидов ряда тория‑232.

Некоторые из них, например нуклиды. свинца-210 и полония-210, поступают в организм с пищей. Они концентрируются в рыбе и моллюсках, поэтому люди, потребляющие много рыбы и других даров моря, могут получить относительно высокие дозы облучения.

Десятки тысяч людей на Крайнем Севере питаются в основном мясом северного оленя (карибу), в котором оба упомянутых выше радиоактивных изотопа присутствуют в довольно высокой концентрации. Особенно велико содержание полония-210. Эти изотопы попадают в организм оленей зимой, когда они питаются лишайниками, в которых накапливаются оба изотопа. Дозы внутреннего облучения человека от полония-210 в этих случаях могут в 35 раз превышать средний уровень. А в другом полушарии люди, живущие в Западной Австралии в местах с повышенной концентрацией урана, получают дозы облучения, в 75 раз превосходящие средний уровень, поскольку едят мясо и требуху овец и кенгуру.

Прежде чем попасть в организм человека, радиоактивные вещества, как и в рассмотренных выше случаях, проходят по сложным маршрутам в окружающей среде, и это приходится учитывать при оценке доз облучения, полученных от какого-либо источника. В качестве примера на рис. 3.6 представлена одна из схем распространения радиоактивных веществ в окружающей среде.

Радон

Лишь недавно ученые поняли, что наиболее весомым из всех естественных источников радиации является невидимый, не имеющий вкуса и запаха тяжелый газ (в 7,5 раза тяжелее воздуха) радон. Согласно текущей оценке НКДАР ООН, радон вместе со своими дочерними продуктами радиоактивного распада ответствен примерно за 3/4 годовой индивидуальной эффективной эквивалентной дозы облучения, получаемой населением от земных источников радиации, и примерно за половину этой дозы от всех естественных источников радиации. Большую часть этой дозы человек получает от радионуклидов, попадающих в его организм вместе с вдыхаемым воздухом, особенно в непроветриваемых помещениях.

В природе радон встречается в двух основных формах: в виде радона-222, члена радиоактивного ряда, образуемого продуктами распада урана-238, и в виде радона-220, члена радиоактивного ряда тория-232. По-видимому, радон-222 примерно в 20 раз важнее, чем радон-220 (имеется в виду вклад в суммарную дозу облучения), однако для удобства оба изотопа в дальнейшем будут рассматриваться вместе и называться просто радоном. Вообще говоря, большая часть облучения исходит от дочерних продуктов распада радона, а не от самого радона.

Радон высвобождается из земной коры повсеместно, но его концентрация в наружном воздухе существенно различается для разных точек земного шара (рис. 3.5). Как ни парадоксально это может показаться на первый взгляд, но основную часть дозы облучения от радона человек получает, находясь в закрытом, непроветриваемом помещении. В зонах с умеренным климатом концентрация радона в закрытых помещениях в среднем примерно в 8 раз выше, чем в наружном воздухе. Для тропических стран подобные измерения не проводились; можно, однако, предположить, что, поскольку климат там гораздо теплее и жилые помещения намного более открытые, концентрация радона внутри их ненамного отличается от его концентрации в наружном воздухе.

Радон концентрируется в воздухе внутри помещений лишь тогда, когда они в достаточной мере изолированы от внешней среды (рис. 3.7). Поступая внутрь помещения тем или иным путем (просачиваясь через фундамент и пол из грунта или, реже, высвобождаясь из материалов, использованных в конструкции дома), радон накапливается в нем. В результате в помещении могут возникать довольно высокие уровни радиации, особенно если дом стоит на грунте с относительно повышенным содержанием радионуклидов или если при его постройке использовали материалы с повышенной радиоактивностью Герметизация помещений с целью утепления только усугубляет дело, поскольку при этом еще более затрудняется выход радиоактивного газа из помещения.

Очень высокие концентрации радона регистрируют последнее время все чаще. В конце 70-х годов строения, внутри которых концентрация радона в 5000 раз превышала среднюю его концентрацию в наружном воздухе, были обнаружены в Швеции и Финляндии. В 1982 году, ко времени выхода последнего доклада НКДАР, строения с уровнями радиации, в 500 раз превышающими типичные значения в наружном воздухе, были выявлены в Великобритании и США, а с тех пор в обеих странах были обнаружены жилища с концентрацией радона, примерно равной его максимальной концентрации в жилых домах в скандинавских странах. При дальнейших обследованиях такого рода выявляется все больше домов с очень высокой концентрацией радона.

 

Самые распространенные строительные материалы - дерево, кирпич и бетон - выделяют относительно немного радона (рис. 3.8). Гораздо большей удельной радиоактивностью обладают гранит и пемза, используемые в качестве строительных материалов, например, в Советском Союзе и Западной Германии. А некоторые материалы преподнесли строителям, ученым и, конечно же, жителям домов, построенных из этих материалов, неприятные сюрпризы, оказавшись особенно радиоактивными.

В течение нескольких десятков лет, например, глиноземы использовались в Швеции при производстве бетона, с применением которого было построено 350-700 тысяч домов. Затем неожиданно обнаружили, что глиноземы очень радиоактивны. В середине 70-х годов их применение было резко сокращено, а затем они вовсе перестали использоваться в строительстве. Кальций - силикатный шлак - побочный продукт, получаемый при переработке фосфорных руд и обладающий, как выяснилось, довольно высокой удельной радиоактивностью, - применялся в качестве компонента бетона и других строительных материалов в Северной Америке (шт. Айдахо и Флорида) и в Канаде. Фосфогипс - еще один побочный продукт, образующийся при другой технологии переработки фосфорных руд, - широко применялся при изготовлении строительных блоков, сухой штукатурки, перегородок и цемента. Он дешевле природного гипса, и его применение приветствовалось защитниками окружающей среды, поскольку фосфогипс относится к разряду промышленных отходов и, таким образом, его использование помогает сохранить природные ресурсы и уменьшить загрязнение окружающей среды. В одной только Японии в 1974 году строительная промышленность израсходовала 3 млн. тонн этого материала. Однако фосфогипс обладает гораздо большей удельной радиоактивностью, чем природный гипс, который он призван был заменить, и, по-видимому, люди, живущие в домах, построенных с его применением, подвергаются облучению, на 30% более интенсивному, чем жильцы других домов. Согласно полученным оценкам, ожидаемая коллективная эффективная эквивалентная доза облучения в результате применения этого материала составляет ~ 300000 чел-Зв.

Среди других промышленных отходов с высокой радиоактивностью, применявшихся в строительстве, следует назвать кирпич из красной глины-отхода производства алюминия, доменный шлак-отход черной металлургии и зольную пыль, образующуюся при сжигании угля.

Известны случаи применения в строительстве даже отходов урановых рудников. В 1952-1966 годах пустая порода из отвалов обогатительных фабрик, производящих урановый концентрат, применялась в качестве строительного материала и для засыпки строительных площадок под дома, особенно в городе Гранд-Джанкшен (шт. Колорадо). В канадском городе Порт-Хоп (провинция Онтарио) для строительных целей использовали отходы, остающиеся после извлечения радия из руды. В обоих случаях пришлось вмешаться правительству и привлечь виновных к судебной ответственности за ущерб, причиненный здоровью людей, которые подверглись ничем не оправданному облучению.

Конечно, радиационный контроль строительных материалов заслуживает самого пристального внимания, однако главный источник радона в закрытых помещениях - это грунт. В некоторых случаях дома возводились прямо на старых отвалах горнодобывающих предприятий, содержащих радиоактивные материалы. Так, в США (шт. Колорадо) дома оказались построенными на отходах урановых рудников,»в Швеции - на отходах переработки глинозема, в Австралии - на отходах, оставшихся после извлечения радия, во Флориде - на регенерированной после добычи фосфатов территории. Но даже и в менее экзотических случаях просачивающийся сквозь пол радон представляет собой главный источник радиоактивного облучения населения в закрытых помещениях.

В Хельсинки максимальные концентрации радона, более чем в 5000 раз превосходящие его среднюю концентрацию в наружном воздухе, были обнаружены в домах, где единственным сколько-нибудь значительным его источником мог быть лишь грунт. Даже в Швеции, где при строительстве домов использовали глиноземистые цементы, главной причиной радиации, как показали недавние исследования, является эмиссия радона из земли.

Концентрация радона в верхних этажах многоэтажных домов, как правило, ниже, чем на первом этаже. Исследования, проведенные в Норвегии, показали, что концентрация радона в деревянных домах даже выше, чем в кирпичных, хотя дерево выделяет совершенно ничтожное количество радона по сравнению с другими материалами. Это объясняется тем, что деревянные дома, как правило, имеют меньше этажей, чем кирпичные, и, следовательно, комнаты, в которых проводились измерения, находились ближе к земле-основному источнику радона.

Скорость проникновения исходящего из земли радона в помещения фактически определяется толщиной и целостностью (т.е. количеством трещин и микротрещин) межэтажных перекрытий. Этот вывод подтвердился при инспекции домов, построенных на регенерированных после добычи фосфатов землях во Флориде, а в Чикаго, например, в домах, стоящих прямо на земле, с земляными подвалами, были зарегистрированы концентрации радона, в 100 раз превышающие его средний уровень в наружном воздухе, хотя удельная радиоактивность грунта была самая обычная.

Из всего сказанного следует, что после заделки щелей в полу и стенах какого-либо помещения концентрация радона там должна уменьшиться. Исследования в этом направлении продолжаются, но некоторые обнадеживающие результаты уже получены. Особенно эффективное средство уменьшения количества радона, просачивающегося через щели в полу, - вентиляционные установки в подвалах. Кроме того, эмиссия радона из стен уменьшается в 10 раз при облицовке стен пластиковыми материалами типа полиамида, поливинилхлорида, полиэтилена или после покрытия стен слоем краски на эпоксидной основе или тремя слоями масляной краски. Даже при оклейке стен обоями скорость эмиссии радона уменьшается примерно на 30%.

 

Еще один, как правило менее важный, источник поступления радона в жилые помещения представляют собой вода и природный газ (рис. 3.9). Концентрация радона в обычно используемой воде чрезвычайно мала, но вода из некоторых источников, особенно из глубоких колодцев или артезианских скважин, содержит очень много радона (рис. 3.10). Такое высокое содержание радона было обнаружено, например, в воде артезианских колодцев в Финляндии и США, в том числе в системе водоснабжения Хельсинки, и примерно в той же концентрации в воде, поступающей в город Хот-Спрингс (шт. Арканзас). Наибольшая зарегистрированная удельная радиоактивность воды в системах водоснабжения составляет 100 млн. Бк/м3, наименьшая равна нулю. По оценкам НКДАР ООН, среди всего населения Земли менее 1% жителей потребляет воду с удельной радиоактивностью более 1 млн Бк/м3 и менее 10% пьют воду с концентрацией радона, превышающей 100000 Бк/м3.

Однако основная опасность, как это ни удивительно, исходит вовсе не от питья воды, даже при высоком содержании в ней радона. Обычно люди потребляют большую часть воды в составе пищи и в виде горячих напитков (кофе, чай). При кипячении же воды или приготовлении горячих блюд радон в значительной степени улетучивается и поэтому поступает в организм в основном с некипяченой водой. Но даже и в этом случае радон очень быстро выводится из организма.

Гораздо большую опасность представляет попадание паров воды с высоким содержанием радона в легкие вместе с вдыхаемым воздухом, что чаще всего происходит в ванной комнате. При обследовании домов в Финляндии оказалось, что в среднем концентрация радона в ванной комнате примерно в три раза выше, чем на кухне, и приблизительно в 40 раз выше, чем в жилых комнатах (рис. 3.12). А исследования, проведенные в Канаде, показали, что все семь минут, в течение которых был включен теплый душ, концентрация радона и его дочерних продуктов в ванной комнате быстро возрастала, и прошло более полутора часов с момента отключения душа, прежде чем содержание радона вновь упало до исходного уровня (рис. 3.11).

Радон проникает также в природный газ под землей. В результате предварительной переработки и в процессе хранения газа перед поступлением его к потребителю большая часть радона улетучивается, но концентрация радона в помещении может заметно возрасти, если кухонные плиты, отопительные и другие нагревательные устройства, в которых сжигается газ, не снабжены вытяжкой. При наличии же вытяжки, которая сообщается с наружным воздухом, пользование газом практически не влияет на концентрацию радона в помещении.

Много радона, улетучившегося из природного газа в процессе предварительной переработки, попадает в сжиженный газ - побочный продукт этой обработки. Но в целом за счет природного газа в дома поступает значительно больше радиоактивного материала (в 10-100 раз), чем от более радиоактивного сжиженного газа, поскольку потребление природного газа гораздо выше.

К значительному повышению концентрации радона внутри помещений могут привести меры, направленные на экономию энергии. При герметизации помещений и отсутствии проветривания скорость вентилирования помещения уменьшается. Это позволяет сохранить тепло, но приводит к увеличению содержания радона в воздухе.

Особенно это касается Швеции, где дома герметизируются особенно тщательно. Долгие годы считалось, что в этой стране не существует проблем, связанных с чрезмерным содержанием радона внутри домов, несмотря на присутствие глинозема в составе строительных материалов: обследование, проведенное в 1956 году, показало что для беспокойств такого рода нет достаточных оснований при существовавших в то время скоростях вентилирования помещений. Однако с начала 50-х годов, с проведением кампании за экономию энергии, скорости вентилирования помещений в домах Швеции постоянно уменьшались, и между 50-м и серединой 70-х годов уменьшились более чем вдвое; как следствие этого концентрация радона внутри домов увеличилась более чем в три раза (рис. 3.13). По оценкам, на каждый гигаватт-год электроэнергии, сэкономленной благодаря герметизации помещений, шведы получили дополнительную дозу облучения в 5600 чел.-Зв.

«Шведская проблема» объясняется тщательной герметизацией помещений, относительно высоким выходом радона из земли при малоэтажности зданий и использованием глинозема в качестве добавки к строительным материалам. Что же касается других стран, то, согласно данным доклада НКДАР ООН за 1982 год (впрочем, гораздо более скудным), концентрация радона вместе с его дочерними продуктами внутри домов в 90% случаев составляет менее 50 Бк/м3, т.е. примерно в 25 раз выше среднего уровня в наружном воздухе, и всего лишь в нескольких процентах домов удельная радиоактивность воздуха внутри помещений превышает 100 Бк/м3. Напротив, в Швеции, согласно тому же докладу, более 30% домов относятся к последней категории, а средняя концентрация радона в домах по всей стране более чем в 4 раза превышает средние значения по другим странам умеренной климатической зоны.

Впрочем, в последнее время появились некоторые данные, свидетельствующие о том, что Швеция не такое уж исключение из общего правила, как одно время полагали. В других странах также стали осознавать, что стоящие перед ними проблемы серьезнее, чем считалось до сих пор. Возможно, тот факт, что ситуация в Швеции выглядит тревожнее, частично объясняется тем, что здесь раньше, чем где бы то ни было, стали проводить исследования в данной области.

Доля домов, внутри которых концентрация радона и его дочерних продуктов составляет от 1000 до 10000 Бк/м3, лежит в пределах от 0,01 до 0,1% в различных странах. Это означает, что не так уж мало людей подвергаются заметному облучению из-за высокой концентрации радона внутри домов, где они живут. Однако в странах, где этот вопрос не стоит так остро, как в Швеции, 3/4 коллективной эквивалентной дозы, получаемой населением этих стран за счет радона, складывается из доз облучения в домах с удельной радиоактивностью воздуха в помещениях менее 100 Бк/м3. Эффективная эквивалентная доза облучения от радона и его дочерних продуктов составляет в среднем около 1мЗв/г, т.е., согласно текущим оценкам, около половины всей годовой дозы, получаемой человеком в среднем от всех естественных источников радиации.

Другие источники радиации

Уголь, подобно большинству других природных материалов, содержит ничтожные количества первичных радионуклидов. Последние, извлеченные вместе с углем из недр земли, после сжигания угля попадают в окружающую среду, где могут служить источником облучения людей.

Хотя концентрация радионуклидов в разных угольных пластах различается в сотни раз, в основном уголь содержит меньше радионуклидов, чем земная кора в среднем. Но при сжигании угля большая часть его минеральных компонентов спекается в шлак или золу, куда в основном и попадают радиоактивные вещества. Большая часть золы и шлаки остаются на дне топки электросиловой станции. Однако более легкая зольная пыль уносится тягой в трубу электростанции. Количество этой пыли зависит от отношения к проблемам загрязнения окружающей среды и от средств, вкладываемых в сооружение очистных устройств.

Облака, извергаемые трубами тепловых электростанций, приводят к дополнительному облучению людей, а оседая на землю, частички могут вновь вернуться в воздух в составе пыли. Согласно текущим оценкам, производство каждого гигаватт-года электроэнергии обходится человечеству в 2 чел-Зв ожидаемой коллективной эффективной эквивалентной дозы облучения, т.е. в 1979 году, например, ожидаемая коллективная эффективная эквивалентная доза от всех работающих на угле электростанций во всем мире составила около 2000 чел-Зв.

На приготовление пищи и отопление жилых домов расходуется меньше угля, но зато больше зольной пыли летит в воздух в пересчете на единицу топлива. Таким образом, из печек и каминов всего мира вылетает в атмосферу зольной пыли, возможно, не меньше, чем из труб электростанций. Кроме того, в отличие от большинства электростанций жилые дома имеют относительно невысокие трубы и расположены обычно в центре населенных пунктов, поэтому гораздо большая часть загрязнений попадает непосредственно на людей. До последнего времени на это обстоятельство почти не обращали внимания, но по весьма предварительной оценке из-за сжигания угля в домашних условиях для приготовления пищи и обогревания жилищ во всем мире в 1979 году ожидаемая коллективная эффективная эквивалентная доза облучения населения Земли возросла на 100000 чел-Зв.

Не много известно также о вкладе в облучение населения от зольной пыли, собираемой очистными устройствами. В некоторых странах более трети ее используется в хозяйстве, в основном в качестве добавки к цементам и бетонам. Иногда бетон на 4/s состоит из зольной пыли. Она используется также при строительстве дорог и для улучшения структуры почв в сельском хозяйстве. Все эти применения могут привести к увеличению радиационного облучения, но сведений по этим вопросам публикуется крайне мало.

Еще один источник облучения населения - термальные водоемы. Некоторые страны эксплуатируют подземные резервуары пара и горячей воды для производства электроэнергии и отопления домов; один такой источник вращает турбины электростанции в Лардерелло в Италии с начала нашего века. Измерения эмиссии радона на этой и еще на двух, значительно более мелких, электростанциях в Италии показали, что на каждый гигаватт-год вырабатываемой ими электроэнергии приходится ожидаемая коллективная эффективная эквивалентная доза 6 чел-Зв, т. е. в три раза больше аналогичной дозы облучения от электростанций, работающих на угле. Однако, поскольку в настоящее время суммарная мощность энергетических установок, работающих на геотермальных источниках, составляет всего 0,1% мировой мощности, геотермальная энергетика вносит ничтожный вклад в радиационное облучение населения. Но этот вклад может стать весьма весомым, поскольку ряд данных свидетельствует о том, что запасы этого вида энергетических ресурсов очень велики.

Добыча фосфатов ведется во многих местах земного шара; они используются главным образом для производства удобрений, которых в 1977 году во всем мире было получено около 30 млн. т. Большинство разрабатываемых в настоящее время фосфатных месторождений содержит уран, присутствующий там в довольно высокой концентрации. В процессе добычи и переработки руды выделяется радон, да и сами удобрения радиоактивны, и содержащиеся в них радиоизотопы проникают из почвы в пищевые культуры. Радиоактивное загрязнение в этом случае бывает обыкновенно незначительным, но возрастает, если удобрения вносят в землю в жидком виде или если содержащие фосфаты вещества скармливают скоту. Такие вещества действительно широко используются в качестве кормовых добавок, что может привести к значительному повышению содержания радиоактивности в молоке. Все эти аспекты применения фосфатов дают за год ожидаемую коллективную эффективную эквивалентную дозу, равную примерно 6000 чел-Зв, в то время как соответствующая доза из-за применения фосфогипса, полученного только в 1977 году, составляет около 300000 чел-Зв.




Поделиться:


Последнее изменение этой страницы: 2016-04-26; просмотров: 267; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.205.56.209 (0.01 с.)