Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Перевод с английского Ю.А. Банникова.Содержание книги Поиск на нашем сайте
RADIATION. Doses, Effects, Risks. United Nations Environment Programme.
ББК 22.383 Р15 УДК 539.1
Радиация. Дозы, эффекты, риск: Пер. с англ. - М.: Мир, 1990.-79 с, ил. ISBN 5-03-001172-2
Книга представляет собой обзор данных, собранных Научным комитетом по действию атомной радиации при ООН за 30 лет его деятельности. Рассмотрены вопросы влияния радиации на жизнедеятельность, предельно допустимые дозы, а также наблюдаемые уровни радиоактивности в окружающей среде и продуктах питания (по отдельным регионам). Книга рассчитана на широкий круг читателей.
Редакция литературы по биологии
Москва «Мир» 1990 Оглавление
Предисловие к русскому изданию Предисловие 1 Введение 2 Радиация и жизнь 3 Естественные источники радиации 4 Источники, созданные человеком 5 Действие радиации на человека 6 Понятие приемлемого риска Предисловие к русскому изданию Действие ионизирующей радиации на живой организм интересовало мировую науку с момента открытия и первых же шагов применения радиоактивного излучения. Это неслучайно, так как с самого начала исследователи столкнулись с его отрицательными эффектами. Так, в 1895 году помощник Рентгена В. Груббе получил радиационный ожог рук при работе с рентгеновскими лучами, а французский ученый А. Беккерель, открывший радиоактивность, получил сильный ожог кожи от излучения радия. Крупнейшие специалисты, обеспокоенные такими эффектами, создали в конце 20-х годов Международную комиссию по радиационной защите (МКРЗ), которая разрабатывала и разрабатывает правила работы с радиоактивными веществами. Используя рекомендации МКРЗ, национальные эксперты комиссии в странах с развитой ядерной энергетикой разрабатывают национальные нормативы. Все это достаточно хорошо описано в нашей литературе. Однако у нас в стране только специалистам известны работы международной организации - Научного Комитета по действию атомной радиации (НКДАР), созданного в рамках ООН в 1955 году. Это неслучайно, так как НКДАР отчитывается перед секретариатом ООН и восемь объемистых томов его научных исследований, посвященных воздействию проникающей радиации на человека и окружающую среду, доступны лишь специалистам.
Предлагаемый читателям перевод книги «Радиация. Дозы, эффекты, риск» является фактически кратким резюме работ, проведенных за тридцать лет в рамках Комитета. Несмотря на краткость изложения, книга знакомит читателей со многими интересными и практически важными данными по естественному радиоактивному фону; в ней дается оценка потенциальной опасности воздействия атомной энергетики и предприятий ядерного топливного цикла по сравнению с традиционными источниками энергии; обсуждаются последствия варварской бомбардировки в августе 1945 года японских городов Хиросимы и Нагасаки и ряд других вопросов. Необходимо отметить, что настоящая публикация была подготовлена к тридцатилетнему юбилею НКДАР (1985 год), поэтому в ней ничего не сказано об аварии на Чернобыльской АЭС. Регулярные сессии Научного Комитета проходят ежегодно, и анализу последствий аварии на ЧАЭС были посвящены сессии 1986 и 1987 годов, где с подробным материалом о ликвидации последствий выступила делегация Советского Союза, которую возглавлял директор Института биофизики АМН СССР академик Л. А. Ильин. Окончательный документ, связанный с этим событием, будет принят НКДАР несколько позже и, может быть, послужит основанием для издания новой, интересной для широкого крута читателей публикации. Для тех, кто хотел бы ознакомиться с дополнительной литературой по рассматриваемым в книге проблемам, можно порекомендовать книгу: Бабаев Н., Демин В., Ильин Л. и др. Ядерная энергетика, человек и окружающая среда; под ред. акад. А. Александрова.-2-е изд., перераб. и доп.-М.: Энергоатомиздат, 1984, брошюру Ю. В. Сивинцева «Радиация и человек» («Знание», 1987) и статью В. И. Иванова «Микродозиметрия» («Природа», № 5, 1987 г.). Д-р физ.-мат. наук Н. С. Бабаев Предисловие Мировая общественность стала проявлять серьезную озабоченность по поводу воздействия ионизирующих излучений на человека и окружающую среду с начала 50-х годов. Дело не только в том, что у всех в памяти были еще свежи ужасы бомбардировок Хиросимы и Нагасаки, но и в том, что в результате испытаний ядерного оружия в атмосфере, проводимых тремя странами, радиоактивный материал стал распространяться по всему земному шару. О действии радиоактивных осадков на человека и окружающую среду было известно в то время очень мало, высказывались лишь многочисленные гипотезы о том, как повлияет на здоровье человека облучение от этого широко распространившегося источника радиации.
Чтобы решить этот вопрос, Генеральная Ассамблея ООН в декабре 1955 года основала Научный комитет по действию атомной радиации (United Nations Scientific Committee on the Effects of Atomic Radiation, UNSCEAR). В резолюции об учреждении комитета было четко сказано, чем он должен заниматься, а чем нет. Не ограничивая деятельность комитета задачей изучения радиоактивных осадков -вопроса, который тогда занимал всех, - в резолюции предлагалось выяснить, каковы уровни радиации, ее действие на окружающую среду и опасность для населения, создаваемые любым источником радиации, как естественным, так и искусственным, включая радиоактивные осадки. Резолюция не обязывала комитет изыскивать средства защиты или давать рекомендации к практическим действиям; он просто должен был оценить существующее положение дел, не обременяя себя ответственностью принятия решения. С тех пор прошло тридцать лет, появилось восемь объемистых докладов, и комитет до сих пор являет собой один из немногих примеров хорошо организованного учреждения, которое выполняет очень важную работу. Эта работа представляет большую ценность как для научной общественности, которая видит в докладах комитета последний и наиболее авторитетный источник данных и оценок по радиации, так и для политических кругов, которые нашли в них солидную фактическую основу для выработки таких документов, как Договор об ограничении испытаний ядерного оружия. Брошюра, которую я имею удовольствие представить читателю, выходит в свет в тридцатую годовщину создания комитета. Цель ее состоит в том, чтобы результаты исследований комитета стали достоянием более широкой аудитории, чем это было до сих пор. В такой сложной и неустоявшейся области, как действие радиации на человека и окружающую среду, трудно обойтись без специальной терминологии. Пользуюсь случаем, чтобы выразить свою признательность редактору брошюры и ученым, сотрудничавшим с ним, за то, что они постарались сделать текст доступным широкому кругу образованных читателей. Конечно, эту книгу нельзя отнести к разряду развлекательных, но усилия, затраченные читателем, окупятся тем, что он сможет многое уяснить для себя и принять участие в одной из актуальнейших дискуссий нашего времени. Мустафа Камаль Толба, генеральный директор Программы ООН по окружающей среде Найроби, декабрь 1985 г. Введение Среди вопросов, представляющих научный интерес, немногие приковывают к себе столь постоянное внимание общественности и вызывают так много споров, как вопрос о действии радиации на человека и окружающую среду. В промышленно развитых странах не проходит и недели без какой-нибудь демонстрации общественности по этому поводу. Такая же ситуация довольно скоро может возникнуть и в развивающихся странах, которые создают свою атомную энергетику; есть все основания утверждать, что дебаты по поводу радиации и ее воздействия вряд ли утихнут в ближайшем будущем.
К сожалению, достоверная научная информация по этому вопросу очень часто не доходит до населения, которое пользуется поэтому всевозможными слухами. Слишком часто аргументация противников атомной энергетики опирается исключительно на чувства и эмоции, столь же часто выступления сторонников ее развития сводятся к мало обоснованным успокоительным заверениям. Научный комитет ООН по действию атомной радиации собирает всю доступную информацию об источниках радиации и ее воздействии на человека и окружающую среду и анализирует ее. Он изучает широкий спектр естественных и созданных искусственно источников радиации, и его выводы могут удивить даже тех, кто внимательно следит за ходом публичных выступлений на эту тему. Радиация действительно смертельно опасна. При больших дозах она вызывает серьезнейшие поражения тканей, а при малых может вызвать рак и индуцировать генетические дефекты, которые, возможно, проявятся у детей и внуков человека, подвергшегося облучению, или у его более отдаленных потомков. Но для основной массы населения самые опасные источники радиации - это вовсе не те, о которых больше всего говорят. Наибольшую дозу человек получает от естественных источников радиации. Радиация, связанная с развитием атомной энергетики, составляет лишь малую долю радиации, порождаемой деятельностью человека; значительно большие дозы мы получаем от других, вызывающих гораздо меньше нареканий, форм этой деятельности, например от применения рентгеновских лучей в медицине. Кроме того, такие формы повседневной деятельности, как сжигание угля и использование воздушного транспорта, в особенности же постоянное пребывание в хорошо герметизированных помещениях, могут привести к значительному увеличению уровня облучения за счет естественной радиации. Наибольшие резервы уменьшения радиационного облучения населения заключены именно в таких «бесспорных» формах деятельности человека. Данная брошюра не претендует на то, чтобы дать ответ на все вопросы. Наши знания здесь все еще недостаточны, хотя об источниках радиации, ее действии на человека и опасности для населения известно больше, чем практически о любом другом факторе, сопряженном с вредными воздействиями. Но в ней сделана попытка подытожить все то достоверное, что известно о действии радиации на человека и окружающую среду, чтобы дискуссии на эту тему могли опираться на более реальную основу.
НКДАР был создан Генеральной Ассамблеей ООН в 1955 году для оценки в мировом масштабе доз облучения, их эффекта и связанного с ними риска. Комитет объединяет крупных ученых из 20 стран и является одним из наиболее авторитетных учреждений такого рода в мире. Он не устанавливает норм радиационной безопасности и даже не дает рекомендаций по этому поводу, а служит лишь источником сведений по радиации, на основе которых такие органы, как Международная Комиссия по защите от радиоактивного излучения и соответствующие Национальные Комиссии, вырабатывают соответствующие нормы и рекомендации. Раз в несколько лет он публикует доклады, содержащие подробные оценки доз радиации, их эффекта и опасности для населения от всех известных источников ионизирующих излучений. В этой брошюре предпринята попытка кратко изложить самые последние данные, почерпнутые из этих докладов, в форме, доступной для рядового читателя, и она никоим образом не может подменить собой сами доклады. Хотя в гл. 2-5 используется материал последних докладов НКДАР Генеральной Ассамблее ООН, сами главы не были рецензированы или одобрены комитетом. В гл. 6 предпринята попытка обсудить некоторые общие положения о допустимости риска радиационного облучения, что не входит в компетенцию комитета и не обсуждалось в его отчетах. Радиация и жизнь Радиоактивность – отнюдь не новое явление; новизна состоит лишь в том, как люди пытались ее использовать. И радиоактивность, и сопутствующие ей ионизирующие излучения существовали на Земле задолго до зарождения на ней жизни и присутствовали в космосе до возникновения самой Земли. Ионизирующее излучение сопровождало и Большой взрыв, с которого, как мы сейчас полагаем, началось существование нашей Вселенной около 20 миллиардов лет назад. С того времени радиация постоянно наполняет космическое пространство. Радиоактивные материалы вошли в состав Земли с самого ее рождения. Даже человек слегка радиоактивен, так как во всякой живой ткани присутствуют в следовых количествах радиоактивные вещества. Но с момента открытия этого универсального фундаментального явления не прошло еще и ста лет. В 1896 году французский ученый Анри Беккерель положил несколько фотографических пластинок в ящик стола, придавив их кусками какого-то минерала, содержащего уран. Когда он проявил пластинки, то, к своему удивлению, обнаружил на них следы каких-то излучений, которые он приписал урану. Вскоре этим явлением заинтересовалась Мария Кюри, молодой химик, полька по происхождению, которая и ввела в обиход слово «радиоактивность». В 1898 году она и ее муж Пьер Кюри обнаружили, что уран после излучения таинственным образом превращается в другие химические элементы. Один из этих элементов супруги назвали полонием в память о родине Марии Кюри, а еще один - радием, поскольку по-латыни это слово означает «испускающий лучи». И открытие Беккереля, и исследования супругов Кюри были подготовлены более ранним, очень важным событием в научном мире - открытием в 1895 году рентгеновских лучей; эти лучи были названы так по имени открывшего их (тоже, в общем, случайно) немецкого физика Вильгельма Рентгена.
Беккерель один из первых столкнулся с самым неприятным свойством радиоактивного излучения: речь идет о его воздействии на ткани живого организма. Беккерель положил пробирку с радием в карман и получил в результате ожог кожи. Мария Кюри умерла, по всей видимости, от одного из злокачественных заболеваний крови, поскольку слишком часто подвергалась воздействию радиоактивного излучения. По крайней мере 336 человек, работавших с радиоактивными материалами в то время, умерли в результате облучения. Несмотря на это, небольшая группа талантливых и большей частью молодых ученых направила свои усилия на разгадку одной из самых волнующих загадок всех времен, стремясь проникнуть в самые сокровенные тайны материи. К сожалению, результатам их поисков суждено было, воплотиться в атомную бомбу в 1945 году. Взрывы этих бомб в конце второй мировой войны привели к колоссальным человеческим жертвам. Но практическим воплощением их поисков явилось также создание в 1956 году первой промышленной атомной электростанции в Колдер Холле (Великобритания) [Первая в мире атомная электростанция была пущена в Советском Союзе в июне 1954 года. - Прим. ред. ]. Следует добавить, что буквально с момента открытия рентгеновских лучей они стали применяться в медицине, и сфера их использования все расширяется. Главным объектом исследования ученых был сам атом, вернее - его строение. Мы знаем теперь, что атом похож на Солнечную систему в миниатюре: вокруг крошечного ядра движутся по орбитам «планеты»-электроны. Размеры ядра в сто тысяч раз меньше размеров самого атома, но плотность его очень велика, поскольку масса ядра почти равна массе всего атома. Ядро, как правило, состоит из нескольких более мелких частиц, которые плотно сцеплены друг с другом (рис. 2.1). Некоторые из этих частиц имеют положительный заряд и называются протонами. Число протонов в ядре и определяет, к какому химическому элементу относится данный атом: ядро атома водорода содержит всего один протон, атома кислорода-8, урана-92. В каждом атоме число электронов в точности равно числу протонов в ядре; каждый электрон несет отрицательный заряд, равный по абсолютной величине заряду протона, так что в целом атом нейтрален. В ядре, как правило, присутствуют и частицы другого типа, называемые нейтронами, поскольку они электрически нейтральны. Ядра атомов одного и того же элемента всегда содержат одно и то же число протонов, но число нейтронов в них может быть разным. Атомы, имеющие ядра с одинаковым числом протонов, но различающиеся по числу нейтронов, относятся к разным разновидностям одного и того же химического элемента, называемым изотопами данного элемента. Чтобы отличить их друг от друга, к символу элемента приписывают число, равное сумме всех частиц в ядре данного изотопа. Так, уран-238 содержит 92 протона и 146 нейтронов; в уране-235 тоже 92 протона, но 143 нейтрона. Ядра всех изотопов химических элементов образуют группу «нуклидов». Некоторые нуклиды стабильны, т. е. в отсутствие внешнего воздействия никогда не претерпевают никаких превращений. Большинство же нуклидов нестабильны, они все время превращаются в другие нуклиды. В качестве примера возьмем хотя бы атом урана-238, в ядре которого протоны и нейтроны едва удерживаются вместе силами сцепления. Время от времени из него вырывается компактная группа из четырех частиц: двух протонов и двух нейтронов (α‑частица). Уран-238 превращается, таким образом, в торий-234, в ядре которого содержатся 90 протонов и 144 нейтрона. Но торий-234 также нестабилен. Его превращение происходит, однако, не так, как в предыдущем случае: один из его нейтронов превращается в протон, и торий-234 превращается в протактиний-234, в ядре которого содержатся 91 протон и 143 нейтрона. Эта метаморфоза, произошедшая в ядре, сказывается и на движущихся по своим орбитам электронах: один из них становится неспаренным и вылетает из атома. Протактиний очень нестабилен, и ему требуется совсем немного времени на превращение... Далее следуют иные превращения, сопровождаемые излучениями, и вся эта цепочка в конце концов оканчивается стабильным нуклидом свинца (см. рис. 2.3). Разумеется, существует много таких цепочек самопроизвольных превращений (распадов) разных нуклидов по разным схемам превращений и их комбинациям. При каждом таком акте распада высвобождается энергия, которая и передается дальше в виде излучения. Можно сказать (хотя это и не совсем строго), что испускание ядром частицы, состоящей из двух протонов и двух нейтронов, - это альфа-излучение; испускание электрона, как в случае распада тория-234,-это бета-излучение. Часто нестабильный нуклид оказывается настолько возбужденным, что испускание частицы не приводит к полному снятию возбуждения; тогда он выбрасывает порцию чистой энергии, называемую гамма-излучением (гамма-квантом). Как и в случае рентгеновских лучей (во многом подобных гамма-излучению), при этом не происходит испускания каких-либо частиц. Весь процесс самопроизвольного распада нестабильного нуклида называется радиоактивным распадом, а сам такой нуклид - радионуклидом. Но хотя все радионуклиды нестабильны, одни из них более нестабильны, чем другие. Например, протактиний-234 распадается почти моментально, а уран-238 - очень медленно. Половина всех атомов протактиния в каком-либо радиоактивном источнике распадается за время, чуть большее минуты, в то же время половина всех атомов урана-238 превратится в торий-234 за четыре с половиной миллиарда лет. Время, за которое распадается в среднем половина всех радионуклидов данного типа в любом радиоактивном источнике, называется периодом полураспада соответствующего изотопа. Этот процесс продолжается непрерывно За время, равное одному периоду полураспада, останутся неизменными каждые 50 атомов из 100, за следующий аналогичный промежуток времени 25 из них распадутся, и так далее по экспоненциальному закону. Число распадов в секунду в радиоактивном образце называется его активностью. Единицу измерения активности (в системе СИ) назвали беккерелем (Бк) в честь ученого, открывшего явление радиоактивности; один беккерель равен одному распаду в секунду. Разные виды излучений сопровождаются высвобождением разного количества энергии и обладают разной проникающей способностью, поэтому они оказывают неодинаковое воздействие на ткани живого организма (рис. 2.2). Альфа-излучение, которое представляет собой поток тяжелых частиц, состоящих из нейтронов и протонов, задерживается, например, листом бумаги и практически не способно проникнуть через наружный слой кожи, образованный отмершими клетками. Поэтому оно не представляет опасности до тех пор, пока радиоактивные вещества, испускающие α-частицы, не попадут внутрь организма через открытую рану, с пищей или с вдыхаемым воздухом; тогда они становятся чрезвычайно опасными. Бета-излучение обладает большей проникающей способностью: оно проходит в ткани организма на глубину один - два сантиметра. Проникающая способность гамма-излучения, которое распространяется со скоростью света, очень велика: его может задержать лишь толстая свинцовая или бетонная плита. Повреждений, вызванных в живом организме излучением, будет тем больше, чем больше энергии оно передаст тканям; количество такой переданной организму энергии называется дозой (термин не слишком удачный, поскольку первоначально он относился к дозе лекарственного препарата, т.е. дозе, идущей на пользу, а не во вред организму). Дозу излучения организм может получить от любого радионуклида или их смеси независимо от того, находятся ли они вне организма или внутри его (в результате попадания с пищей, водой или воздухом). Дозы можно рассчитывать по-разному, с учетом того, каков размер облученного участка и где он расположен, один ли человек подвергся облучению или группа людей и в течение какого времени это происходило. Количество энергии излучения, поглощенное единицей массы облучаемого тела (тканями организма), называется поглощенной дозой (рис. 2.4) и измеряется в системе СИ в грэях (Гр). Но эта величина не учитывает того, что при одинаковой поглощенной дозе альфа-излучение гораздо опаснее бета- или гамма-излучений. Если принять во внимание этот факт, то дозу следует умножить на коэффициент, отражающий способность излучения данного вида повреждать ткани организма: альфа-излучение считается при этом в двадцать раз опаснее других видов излучений. Пересчитанную таким образом дозу называют эквивалентной дозой; ее измеряют в системе СИ в единицах, называемых зивертами (Зв) (рис. 2.5). Следует учитывать также, что одни части тела (органы, ткани) более чувствительны, чем другие: например, при одинаковой эквивалентной дозе облучения возникновение рака в легких более вероятно, чем в щитовидной железе, а облучение половых желез особенно опасно из-за риска генетических повреждений. Поэтому дозы облучения органов и тканей также следует учитывать с разными коэффициентами (рис. 2.6). Умножив эквивалентные дозы на соответствующие коэффициенты и просуммировав по всем органам и тканям, получим эффективную эквивалентную дозу, отражающую суммарный эффект облучения для организма; она также измеряется в зивертах. Эти три понятия описывают только индивидуально получаемые дозы. Просуммировав индивидуальные эффективные эквивалентные дозы, полученные группой людей, мы придем к коллективной эффективной эквивалентной дозе, которая измеряется в человеко-зивертах (чел-Зв). Следует ввести, однако, еще одно определение, поскольку многие радионуклиды распадаются очень медленно и останутся радиоактивными и в отдаленном будущем. Коллективную эффективную эквивалентную дозу, которую получат многие поколения людей от какого-либо радиоактивного источника за все время его дальнейшего существования, называют ожидаемой (полной) коллективной эффективной эквивалентной дозой. Такая иерархия понятий на первый взгляд может показаться слишком сложной, но тем не менее она представляет собой логически последовательную систему и позволяет рассчитывать согласующиеся или сопоставимые друг с другом дозы облучения. В последующих главах материал будет излагаться так, чтобы по возможности избежать употребления этих терминов, однако без них иногда не удается достичь необходимой точности и ясности изложения.
|
|||||||||||
Последнее изменение этой страницы: 2016-04-26; просмотров: 82; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.37.211 (0.016 с.) |