Катастрофа на Саяно-Шушенской ГЭС.



Мы поможем в написании ваших работ!


Мы поможем в написании ваших работ!



Мы поможем в написании ваших работ!


ЗНАЕТЕ ЛИ ВЫ?

Катастрофа на Саяно-Шушенской ГЭС.



8:13-8:30 местного времени 17 августа 2009 года на станции произошла авария на гидроагрегате № 2 с его разрушением и поступлением большого количества воды в помещение машинного зала. Также получили сильные повреждения агрегаты № 7 и № 9, здание машинного зала частично обрушилось, его конструкции завалили агрегаты № 3, № 4 и № 5. В результате аварии погибло 75 человек.

По оценкам главы МЧС России Сергея Шойгу, восстановление агрегатов Саяно-Шушенской ГЭС после произошедшей 17 августа 2009 года аварии может занять годы.

По мнению Василия Зубакина, исполняющего обязанности генерального директора РусГидро, на полное восстановление Саяно-Шушенской ГЭС может понадобиться порядка трех лет и 10 млрд. рублей. Валентин Стафиевский, член оперативного штаба по ликвидации последствий чрезвычайной ситуации, бывший главный инженер станции, выразил свое мнение по поводу случившегося: «У меня в гидроэнергетике стаж работы больше пятидесяти лет, я работал и участвовал в строительстве самых крупных в стране Красноярской и Саянской электростанций, вся жизнь моя здесь прошла, но приехал сюда в первый день и не мог поверить своим глазам, что такое вообще возможно. Это не авария, а трагедия. Уверяю вас, что подобных аварий ни в мире, ни у нас в стране не было. Она ни в какие сценарии аварийных ситуаций, прописанных нами до этого, не вписывается». Ростехнадзор сейчас считает основной версией причины аварии выход на запредельные режимы работы гидроагрегата № 2: не сработали автоматические системы торможения гидроагрегата и система автоматического закрытия задвижек, перекрывающих воду. Министр энергетики России Сергей Шматко заявил, что причины аварии остаются неясными. «Вес сорванной крышки турбины составляет 800 тонн, и мы не понимаем природу этого явления», сказал он.

По предварительным данным, к аварии привели не ошибки персонала или так называемый человеческий фактор. На станции было три степени автоматической защиты. Первый уровень должен был автоматически снизить обороты движения турбины. Второй предполагал поворот лопаток, ограничивающий — закрытие аварийных водоводов на поток воды из водовода к турбинам. Третий уровень верхнего бьефа (часть водоёма, примыкающая к плотине). Ни одна из этих автоматических систем не сработала, а затворы были закрыты вручную спустя десятки минут после начала аварии. В результате аварии были полностью или частично отключены от энергоснабжения ряд стратегических объектов региона: Саянский алюминиевый завод, Хакасский алюминиевый завод, Красноярский алюминиевый завод, Кузнецкий завод ферросплавов, Новокузнецкий алюминиевый завод, а также нарушено энергоснабжение в сибирских регионах: в Алтайском крае, Кемеровской области, Республике Хакасия и в Томске.

Если электролизеры застынут, то алюминиевое производство — дело сложное и отнюдь не быстрое. Восстанавливать их крайне трудно.

Теперь же, в связи с тем, что недовыработку энергии Саяно-Шушенской ГЭС придется компенсировать выработкой угольных ТЭС, включая дозагрузку низкоэффективных объектов, таких как Красноярская ГРЭС-2 и Назаровская ГРЭС, структура баланса первичных источников значительно скажется на тарифах на электроэнергию.

По сообщению директора по продажам «Русгидро» Евгения Десятова, компания предполагает переложить часть непредвиденных расходов на потребителей, увеличив тариф на 2010 г., и уже готовит новую заявку в Федеральную службу по тарифам.

В настоящее время глава Ростехнадзора, заявил, что работа автоматической системы управления гидроагрегата была некорректной, а версии о гидроударе, а также версия о внешнем воздействии, которые ранее рассматривались как возможные причины аварии, в настоящее время не подтверждаются.

Давайте посмотрим глубже.

Ни для кого не секрет, что РАО «ЕС» практически не финансировало организации, которые занимались диагностикой оборудования в отрасли. Техническое управление в РАО «ЕЭС России» было ликвидировано около семи лет назад, как и должности главных инженеров региональных энергосистем, при Чубайсе.

Специалисты давно предупреждали об аварийном состоянии — смотрите на плотины Саяно-Шушенской ГЭС. Газета «Коммерсантъ» 11 апреля 1998 — опубликовала статью под названием «Саяно-Шушенская ГЭС опасна», в этой статье Саяно-Шушенская ГЭС, со ссылкой на прогноз МЧС России, названа «потенциально опасным объектом»:

«Конструкции этой станции претерпели опасные изменения. Последствия прорыва плотины могут быть катастрофическими, в особенности для Красноярска. То, что плотина явно неблагополучна, признают все; расхождения касаются оценок степени опасности и сегодняшнего состояния ГЭС. РАО ЕЭС (хозяин станции) заявляет о полном контроле над ситуацией и считает, что необходим только текущий ремонт. Независимые специалисты, наоборот, говорят о необратимых изменениях плотины, которые грозят ее разрушением».

А вот книга 1999 года издания, «Из опыта создания и освоения Красноярской и Саяно-Шушенской гидроэлектростанций» (Красноярск, Издательский дом «Суриков»). Написана бывшим гендиректором Саяно-Шушенской ГЭС Валентином Брызгаловым.

В книге, написанной еще десять лет назад, Валентин Брызгалов признает, что Саяно-Шушенская ГЭС была экспериментальной по своей сути (между прочим, госкомиссия официально приняла — как раз в это время Валентин Брызгалов станцию в эксплуатацию лишь в 2000 году покидал управление станцией). За годы ее работы произошло несколько десятков нарушений работы гидротурбин и повреждений их узлов.

В частности: «первые четыре агрегата Саяно-Шушенской ГЭС (т. е. включая № 2) испытывали достаточно сильное вибрационное воздействие из-за работы с нерасчетными напорами. В результате на ряде узлов усталостная прочность оказалась недостаточной. Вместе с тем выявились дефекты, связанные с недостаточной предварительной натурной изученностью отдельных явлений и новых конструкторских разработок. В некоторых случаях сказалось бескомпромиссное стремление к снижению затрат металла на один киловатт установленной мощности».

А вот и конкретно:

«Исследование причин разрушений путем проведения натурных испытаний показало, что для радиально-осевых гидротурбин неточность геометрии при изготовлении рабочих колес приводит к большему гидравлическому дисбалансу. На основании опыта эксплуатации наиболее неблагополучного в этом отношении гидроагрегата № 2 со сменным рабочим колесом была признана возможность возникновения усилий на турбинный подшипник, превышающих расчетное значение…»

В своей книге Брызгалов как раз отмечает повышенную вертикальную вибрацию крышки турбины гидроагрегата.

Катастрофу можно было предотвратить десять лет назад, но были четко — и аварии могло бы и не быть.

По сообщению «Русгидро», гидроагрегат № 2 останавливали 14 января этого года для «проведения среднего ремонта с наплавкой рабочего колеса». После ремонта, который продолжался два месяца, гидроагрегат № 2 был введен в эксплуатацию.

Особенность ремонта: кроме замены устройств технологической автоматики, на гидроагрегате № 2 впервые была заменена колонка управления в системе регулирования.

Работу выполняли специалисты ЗАО «Гидроэнергоремонт». Реконструкция автоматизированных систем управления проводилась научно-производственным объединением «Ракурс» из Санкт-Петербурга. Замену колонки ЭГР проводили специалисты Санкт-Петербургской компании «Промавтоматика».

А вот и отрывки с форума, на котором обсуждали происшедшее местные жители, которые работали на ГЭС. Цитаты:

«Весной 2009 года ГА-2 был введен в эксплуатацию после капитального ремонта и, соответственно, в капремонт пошел ГА-6. Практически сразу после ввода в эксплуатацию выяснилось, что агрегат неисправен. Агрегат необходимо снова останавливать и выводить в ремонт. А это потери денег и недополученная прибыль от сокращения выработки электроэнергии станцией. Агрегат продолжает работать с повышенными температурой и вибрацией».

«Несколько месяцев подряд (до катастрофы) писались служебные записки о перегреве ГА-2».

«В воскресенье, 16 августа 2009 года, вибрации ГА-2 усиливаются до неприемлемых значений».

«… Колебания на два миллиметра перед самым разрушением» (максимум допустимой нормы).

«Когда Шойгу назвал эту аварию уникальной, он даже не догадывался, насколько он прав. Потому что только в России могут несколько месяцев сознательно эксплуатировать неисправный гидроагрегат на высоконапорной ГЭС в угоду финансовым интересам отдельных людей…»

Но все еще интереснее

«Из-за вибрации, вызванной несинхронизированной работой лопаток НА, (управляемых АСУТП, которую в марте поставил «Ракурс» и «Промавтоматика») еще в пятницу, т. е. 14.08.09, вечером обсуждается решение об остановке ГА-2, но в понедельник остановка ГА-2 откладывается с переходом в наиболее оптимальный по уровню вибрации и отдачи ЭЭ режим.

В воскресенье, 16.08, во второй половине дня вибрация становится слишком очевидной и на тех режимах, которые в пятницу были оптимальными. Но на ГЭС ждали важных гостей. Данные с датчиков имеют большой разнобой, но кто об этом проговорится перед приездом Гостей? Ночью с 16 на 17 августа вибрации становятся ужасающими. В шесть часов утра в понедельник поднимают руководство турбинного цеха. С утра на станцию прибывает усиленный наряд уборщиц для наведения лоска и глянца, а для присмотра за норовистым ГА-2 сдвоенная бригада слесарей и ремонтников.

Далее, во время прохождения «зоны запрещенной работы» лавинообразно сбоит новая питерская автоматика, которая дает команду на закрытие НА. Столб движущейся воды (360 кубометров в секунду) в водоводе резко упирается в закрывающиеся лопатки НА…

К ремонтным работам на элементах гидроагрегата, критически влияющих на надежность работы всей машины, не привлекались его производители.

Оборудование для Саяно-Шушенской ГЭС поставляли Ленинградский металлический завод и «Электросила», ныне входящие в концерн «Силовые машины». «Поставки гидроагрегатов для Саяно-Шушенской ГЭС начались более 30 лет назад. Блок № 1 и блок № 2 станции были введены в эксплуатацию в 1978 и 1979 годах соответственно. По данным технических специалистов ОАО «Силовые машины», первый гидроагрегат уже выработал свой ресурс и требует замены.

При этом в «Силовых машинах» отметили, что, начиная с 1993 года, специалисты концерна к эксплуатации и ремонту гидрооборудования на станции не привлекались.

Все просто, дело в устаревшем оборудовании:

1) гидроагрегат № 1 выработал свой ресурс;

2) до полной выработки ресурса гидроагрегата № 2 (рассчитанного на условия соблюдения советских норм эксплуатации и технического обслуживания) оставалось несколько месяцев;

3) 16 лет ремонт и обслуживание гидроагрегатов станции производилось без контроля со стороны завода-изготовителя;

4) во внедрении новой АСУ, законченном за пару дней до аварии, инженеры «Силовых машин» участия не принимали.

Наглядная иллюстрация: автоматизированная система управления технологическими процессами Саяно-Шушенской ГЭС сохранила архив данных о работе станции до момента аварии.

Вспомнили об этом через девять дней после трагедии. Причем, это заявило не «РусГидро», не госкомиссия, а напомнили разработчики системы .

«Силовые машины» готовы в 2011 году начать поставки гидроагрегатов. Объем поставок будет понятен после анализа технического состояния оборудования станции. Пока руководство ГЭС говорит, что от аварии пострадали все десять энергоблоков. Эксперты отмечают, что «Силовые машины», изготовившие все гидроагрегаты Саяно-Шушенская ГЭС, являются единственной компанией, способной в достаточно оперативные сроки изготовить новое оборудование. При этом, скорее всего, «Силовым машинам» придется пожертвовать собственной программой модернизации. Какова стоимость изготовления разрушенных агрегатов? Менять надо полностью минимум четыре, а не только № 2. Эту сумму никто не даст «Силовым машинам».

Сейчас ОАО «Силовые машины» поставляет оборудование на ГЭС «Ла Йеска» в Мексике. Мексиканские турбины гораздо слабее, чем нужно для Саяно-Шушенскй ГЭС. Они требуют более простых технологий и меньших площадей.

Нужно восстанавливать не просто отдельное предприятие, а несколько отраслей сразу. Кроме того, в связи с Мексикой «Силовые машины» практически не будут иметь свободных производственных мощностей до 2012 ого года включительно

А они должны еще поставить на Богучанскую ГЭС 9 гидротурбин, контракт рассчитан до 2012 года.

Какими методами решать проблему: Государственное регулирование и управление. Этот рецепт подтверждается всей мировой практикой: еще ни один кризис не преодолевался либеральными методами и не прекращался из-за действия пресловутой «невидимой руки рынка». Причем восстанавливать надо сейчас все в комплексе: образование среднее, специальное и высшее; научные институты и проектные лаборатории и т. д., а не только заводы. Грядет эра техногенных катастроф, обусловленная не только полной выработкой ресурса «советской» техники, но и сознательной злой волей внешних и внутренних врагов России. Надо срочно перестраивать государственное управление под наступающую эру — эру техногенных катастроф.


ЧАЭС.

Предпосылки аварии.

Авария произошла на 4-м энергоблоке 26 апреля 1986 года примерно в 01:23 по московскому времени. В результате произошло разрушение активной зоны реакторной установки и части зданий 4-го энергоблока, а также произошел выброс радиоактивных продуктов в атмосферу.

Произошел тепловой взрыв. В реакторе началось интенсивное образование пара. Затем произошел кризис теплоотдачи, разогрев топлива, его разрушение, бурное вскипание теплоносителя, в который попали частицы разрушенного топлива, резко повысилось давление в технологических каналах. Это и привело к тепловому взрыву, разрушившему реактор.

По свидетельству очевидцев, находившихся вне территории станции, примерно в 01:24 раздались последовательно два взрыва. Над 4-м энергоблоком взлетели искры, какие-то светящиеся куски, часть из которых упала на крышу машинного зала.

День 25 апреля 1986 года на 4-м энергоблоке ЧАЭС планировался как не совсем обычный. Предполагалось остановить реактор на планово-предупредительный ремонт. Перед остановкой были запланированы испытания одного из турбогенераторов в режиме, говоря языком специалистов, выбега с нагрузкой собственных нужд блока. Суть эксперимента заключается в моделировании ситуации, когда турбогенератор может остаться без своей движущей силы, то есть без подачи пара. Для этого и был разработан специальный режим, в соответствии, с которым при отключении пара за счет инерционного вращения ротора генератор какое-то время продолжал вырабатывать электроэнергию, необходимую для собственных нужд, в частности для питания главных циркуляционных насосов.

25 апреля 1986 года ситуация развивалась следующим образом:

· 13 часов 00 минут - Согласно графику остановки реактора на планово-предупредительный ремонт (ППР), персонал приступил к снижению мощности аппарата, работавшего на номинальных параметрах.

· 13 часов 05 минут - При тепловой мощности 1600 МВт отключен от сети седьмой турбогенератор, входящий в систему 4-го энергоблока. Электропитание собственных служб (ГЦН и другие потребители) перевели на восьмой турбогенератор.

· 14 часов 00 минут - В соответствии с программой испытаний, отключается система аварийного охлаждения реактора. Поскольку реактор не должен эксплуатироваться без системы аварийного охлаждения, его необходимо было остановить. Однако диспетчер "Киевэнерго" не дал разрешение на остановку реактора. И реактор продолжал работать без САОР.

· 23 часа 10 минут - Получено разрешение на остановку реактора. Началось дальнейшее снижение его мощности до 1000-700 МВт (тепловых), как и предусматривалось программой испытаний. Но оператор не справился с управлением, и мощность реактора упала почти до нуля. В таких случаях реактор должен глушиться. Но персонал не посчитался с этим требованием. Начали подъем мощности.

· 26 Апреля. 1 час 00 минут - Персоналу, наконец, удалось поднять мощность и стабилизировать ее на уровне 200 МВт вместо 1000 МВт, запланированных программой испытаний.

· 1 час 03 минуты и 1 час 07 минут - К шести работающим ГЦН дополнительно подключили еще два, чтобы повысить надежность охлаждения активной зоны реактора после испытаний.

Подготовка к эксперименту.

· 1 час 20 минут - Стержни автоматического регулирования (АР) вышли из активной зоны на верхние концевики, и оператор даже помогал этому с помощью ручного управления. Только так удалось удержать мощность аппарата на уровне 200 МВт (тепловых). Но какой ценой? Ценой нарушения строжайшего запрета работать на реакторе без определенного запаса стержней - поглотителей нейтронов.

· 1 час 22 минуты 30 секунд - В активной зоне находилось всего шесть-восемь стержней. Эта величина примерно вдвое меньше предельно допустимой, и опять реактор требовалось заглушить.

· 1 час 23 минуты 4 секунды - Оператор закрыл стопорно-регулирующие клапаны восьмого турбогенератора. Подача пара на него прекратилась. Начался режим выбега. В момент отключения второго турбогенератора должна была бы сработать еще одна автоматическая защита по остановке реактора. Но персонал, зная это, заблаговременно отключил ее, чтобы, по-видимому, иметь возможность повторить испытания, если первая попытка не удастся.

В ситуации, возникшей в результате нерегламентированных действий персонала, реактор попал (по расходу теплоносителя) в такое состояние, когда даже небольшое изменение мощности приводит к увеличению объемного паросодержания, во много раз большему, чем при номинальной мощности. Рост объемного паросодержания вызвал появление положительной реактивности. Колебания мощности в конечном итоге могло привести к дальнейшему ее росту.

· 1 час 23 минуты - Начальник смены 4-го энергоблока, поняв опасность ситуации, дал команду старшему инженеру управления реактором нажать кнопку самой эффективной аварийной защиты (АЗ-5). Стержни пошли вниз, однако через несколько секунд раздались удары, и оператор увидел, что поглотители остановились. Тогда он обесточил муфты сервоприводов, чтобы стержни упали в активную зону под действием собственной тяжести. Но большинство стержней-поглотителей так и осталось в верхней половине активной зоны.

26 Апреля 1986 года в 1 час 23 минуты 40 секунд произошел взрыв.

В ходе проведения проектных испытаний одной из систем обеспечения безопасности. Данная система безопасности предусматривала использование механической энергии вращения останавливающихся турбогенераторов (так называемого выбега) для выработки электроэнергии в условиях наложения двух аварийных ситуаций. Одна из них - полная потеря электроснабжения АЭС, в том числе главных циркуляционных насосов (ГЦН) и насосов системы аварийного охлаждения реактора (САОР); другая - максимальная проектная авария (МПА), в качестве которой в проекте рассматривается разрыв трубопровода большого диаметра циркуляционного контура реактора. Проектом предусматривалось, что при отключении внешнего электропитания электроэнергия, вырабатываемая турбогенераторами за счет выбега, подается для запусков насосов, входящих в САОР, что обеспечило бы гарантированное охлаждение реактора. Предложение об использовании выбега ТГ исходило в 1976 году от главного конструктора реактора РБМК. Эта концепция была признана и включена в проекты строительства АЭС с реакторами такого типа.

Однако энергоблок № 4 ЧАЭС, как и другие энергоблоки с РБМК, был принят в эксплуатацию без опробования этого режима, хотя такие испытания должны быть составной частью предэксплуатационных испытаний основных проектных режимов энергоблока. Кроме Чернобыльской, ни на одной АЭС с реакторами РБМК – 1000 после ввода их в эксплуатацию, проектные испытания по использованию выбега ТГ не проводились. Такие испытания были проведены на энергоблоке № 3 Чернобыльской АЭС в 1982 г. Они показали, что требования по характеристикам электрического тока, вырабатываемого за счет выбега ТГ, в течение заданного времени не выдерживались и необходима доработка системы регулирования возбуждения ТГ.

Программами испытаний 1982-1984 гг. предусматривалось подключение к выбегающему ТГ по одному ГЦН каждой из двух петель циркуляции реактора, а программами 1985 г. и апреля 1986 г. - по два ГЦН. При этом моделирование аварийной ситуации предусматривалось при отключенной ручными задвижками САОР. Испытание на 4-м энергоблоке было намечено провести днем 25 апреля 1986г. при тепловой мощности реактора 700 МВт, после чего реактор планировалось остановить для проведения плановых ремонтных работ. Следует отметить, что программа испытаний соответствовала действовавшим на тот момент требованиям . Таким образом, испытания должны были проводиться в режиме пониженной мощности, для которого характерны повышенный, относительно номинального, расход теплоносителя через реактор, незначительный недогрев теплоносителей до температуры кипения на входе в активную зону и минимальное паросодержание. Эти факторы оказали прямое влияние на масштаб аварии.

Авария на ЧАЭС привела к выбросу из активной зоны реактора 50 МКи радионуклидов и 50 МКи радиоактивных благородных газов , что составляет 3-4% от исходного количества радионуклидов в реакторе, которые поднялись с током воздуха на высоту 1200 м. Выброс радионуклидов в атмосферу продолжался до 6 мая, пока разрушенную активную зону реактора не забросали мешками с доломитом, песком, глиной и свинцом. И все это время в атмосферу поступали радионуклиды, которые развеялись ветром по всему миру. Отдельные мелкодисперсные частицы и радиоактивные газы были зарегистрированы на Кавказе, в Средней Азии, Сибири, Китае, Японии, США. 27 апреля в Хойниках радиационный фон составлял 3 Р/ч ! Хватит и пяти дней, чтобы чтоб заболеть хронической лучевой болезнью. 28 апреля на большей части северной Европы, в частности в Дании наблюдалось повышение радиационного фона на 10% от исходного уровня . Сложные метеорологические условия и высокая летучесть радионуклидов привели к тому, что радиационный след сформировался в виде отдельных пятен.

Наряду с сильным загрязнением попадались участки совсем не загрязненные. Выпадение радиоактивности наблюдалось даже в районе Балтийского моря в виде длинного узкого следа. Сильному радиоактивному загрязнению подверглись Гомельская и Могилевская области Белоруссии, некоторые районы Киевской и Житомирской областей Украины, часть Брянской области России. Но основная часть радионуклидов осела в так называемой 30-километровой зоне и к северу от неё.

В выбросах было выделено 23 основных радионуклида. Большая часть из них распалась в течение нескольких месяцев, облучая при этом все вокруг дозами, в несколько десятков и сотен раз превосходящих фоновые. Из этих нуклидов наиболее опасен йод-131, имеющий период полураспада 8 сут и обладающий высокой способностью включаться в пищевые цепи. Однако его воздействие кратковременно, и заражения им человеку легко избежать путем проведения йодопрофилактики (т.е. в молекулы организма включается только «нормальный» йод, а радиоактивному как бы уже и места нет и он спокойно выводится из организма) и снижения потребления продуктов, превышающих санитарные нормы содержания его. В первые месяцы после аварии было категорически запрещено вести какую-либо хозяйственную деятельность на загрязненной территории, поэтому со стороны йода опасности заражения продуктов питания не возникло, она заключалась лишь в альфа- и бета-излучении.

Из долгоживущих изотопов, которые лучше назвать среднеживущими, наиболее значимыми являются стронций-90 и цезий-137 с периодами полураспада соответственно 29 и 30 лет. Они обладают рядом особенностей поведения в организме, путей поступления и способов выведения из организма, разные продукты обладают различной способностью концентрировать их в себе. Так, в 90 г. в Хойническом районе Гомельской области Белоруссии содержание цезия-137 в мясе в 400 раз; в картофеле – в 60 раз; в зерне – в 40-7000 раз (в зависимости от вида и места произрастания); в молоке – в 700 раз, а стронция – в 40 раз было выше нормы.

Что же можно сказать о таких долгоживущих изотопах, как калий-40, плутоний-239 и других, выбросы которых также имели место, периоды полураспада которых исчисляются тысячами и миллионами лет, об их участии в загрязнении окружающей среды. Можно лишь сказать, что радиоактивный калий так же активно вступает в метаболизм, как и стабильный его изотоп, а плутоний, попадая в легкие, даже в очень малых концентрациях, способен вызвать рак их.

Но что же было сделано для того, чтоб очистить зараженные территории от радионуклидов, чтоб больше не подвергать людей этой опасности? Ведь отдаленные последствия хронического действия малых доз радиации – малоизученная область знания, почти ничего не известно о влиянии этого фактора на потомство. Одно можно сказать, что сколь угодно малой не была доза, она обязательно даст о себе знать.

Дезактивация территорий заключалась в одном – смыве радиоактивной пыли с поверхностей предметов. Это, конечно, важно и необходимо, но кто подумал о том, куда это всё смывалось, о земле, и так уже заражённой? Даже более того, 30-ти километровая зона была объявлена своеобразной «лабораторией», полигоном научных исследований для изучения влияния радиации на природу, следовательно, не принималось никаких попыток по дезактивации почв. За пределами 30-километровой зоны таких работ также не проводилось, хотя науке известны способы выведения радионуклидов из почв. Основным принципом таких работ является перевод радионуклидов в растения с последующим их выкосом и захоронением. Ионы в почвах могут существовать в двух видах: в растворимом и адсорбированном. В адсорбированном виде они недоступны для растений. Сорбционная способность почв зависит от типа почв, наличия в них тех или иных веществ и многих других факторов. Сорбция велика при наличии органических веществ в почве. Она значительно снижается при низких значениях рН, при наличии комплексонов, а также атомов-аналогов, которыми являются для Со,Y и Се – Fe и Al, для Sr и Cs – Са и К. Адсорбированные же ионы легко вытесняют друг друга в соответствии с рядом активности металлов. Стронций вытесняется ионами железа и меди, к тому же сам обладает достаточной подвижностью в почвах. Цезий практически не вытесняется, но по данным Куликова И.В. и др. водными растительными экстрактами и ЭДТА. Его подвижность увеличивается в почвах с высоким содержанием К и Са. Эта проблема требует дополнительных исследований.

Сильно пострадала территория, находящаяся в непосредственной близости от 4-го блока. От мощного облучения короткоживущими изотопами погибла часть хвойного леса. Умершая хвоя была рыжего цвета, а сам лес таил в себе смертельную опасность для всех, кто в нем находился. После осыпания хвои из голых ветвей проглядывали редкие зеленые листья березы – это говорило о большей устойчивости лиственных деревьев к радиации. У выживших хвойных деревьев летом 86 г. наблюдалось ингибирование роста, некроз точек роста, рост спящих почек, уплощение хвои, иголки ели по длине напоминали сосновые . Вместе с тем наблюдались компенсаторные реакции: увеличение продолжительности жизни хвои в ответ на снижение митотической активности и рост спящих почек в связи со смертью точек роста.

Весь мертвый лес площадью в несколько га был вырублен, вывезен и навсегда погребен в бетоне. В оставшихся лесах предполагается замена хвойных деревьев на лиственные. В результате катастрофы погибли все мелкие грызуны. Исчез с лица земли целый биоценоз хвойного леса, а сейчас там – буйное разнотравье случайной растительности. Вода так же подвержена радиоактивному загрязнению, как и земля. Водная среда способствует быстрому распространению радиоактивности и заражению больших территорий до океанических просторов.

В Гомельской области стали непригодными для использования 7000 колодцев, ещё из 1500 пришлось несколько раз откачивать воду.

Пруд-охладитель подвергся облучению свыше 1000 бэр. В нем скопилось огромное количество продуктов деления урана. Большинство организмов, населяющих его, погибли, покрыли дно сплошным слоем биомассы. Сумели выжить лишь несколько видов простейших. Уровень воды в пруде на 7 метров выше уровня воды в реке Припять, поэтому и сегодня существует опасность попадания радиоактивности в Днепр.

Стоит, конечно, сказать, что усилиями многих людей удалось избежать загрязнения Днепра путем осаждения радиоактивных частиц на построенных многокилометровых земляных дамбах на пути следования зараженной воды реки Припять. Было также предотвращено загрязнение грунтовых вод – под фундаментом 4-го блока был сооружен дополнительный фундамент. Были сооружены глухие дамбы и стенка в грунте, отсекающие вынос радиоактивности из ближней зоны ЧАЭС. Это препятствовало распространению радиоактивности, но способствовало концентрации её на самой ЧАЭС и вокруг неё. Радиоактивные частицы и сейчас остаются на дне водоемов бассейна Припяти. В 88 г. принимались попытки очистки дна этих рек, но в связи с развалом союза не были закончены. А сейчас такую работу вряд ли кто-нибудь будет делать.

 

Эвакуация и переселение.

 

K настоящему времени из наиболее загрязненных мест в трех странах эвакуировано 250 000 человек. Миллионы людей продолжают жить на территориях с высоким уровнем радиационного загрязнения. Отселение людей в таких масштабах является широкомасштабным мероприятием, что является непосильным бременем для экономики страны. Предстояло построить целые города для переселенцев и это несчастье пало тяжким бременем на плечи людей. Ведь строительство города означает нечто гораздо большее, нежели чем строительство нескольких многоэтажных зданий: потребовалось перестроить жизнь населения, обеспечив все необходимые для жизни условия, создав рабочие места, построив предприятия, больницы и т.д. Жизнь сложна и многогранна и поэтому неудивительно, что, когда люди начинают жить с нуля, это всегда не так и просто. Переселенцы нуждаются в оказании помощи со стороны правительства, при этом среди них отмечается высокий уровень безработицы.

В Украине для вынужденных переселенцев был построен новый город под названием Славутич. В него переехало 55 000 человек из города Припять, которые ранее работали на Чернобыльской АЭС. Сегодня 6 000 жителей Славутича до сих пор работают на станции, и до сих пор неизвестно, как сложится их жизнь и судьба после ее закрытия.

Вот краткое изложение проблем, порожденных чернобыльской катастрофой. Естественной преградой для их решения является нехватка материальных ресурсов пострадавших стран. Ситуация усложняется ещё и тем, что на Украине и в Беларуси пострадавшие территории располагали значительными хозяйственными ресурсами и выведение их из оборота легло тяжким бременем на экономику ставшего вскоре независимым государства. С подобными проблемами в свое время пришлось столкнуться Японии после бомбардировок Хиросимы и Нагасаки. В отличие от советского, японское правительство не стало заниматься переселением людей с зараженных территорий, но в то время не существовало информации о воздействии радиации на организм человека. Ниже приводятся материалы некоторых исследований.

На 1 января 2001 года Российский государственный медико-дозиметрический регистр (РГМДР) содержит индивидуальные медико-дозиметрические данные на 571 135 человек, подвергшихся радиационному воздействию в результате чернобыльской катастрофы и проживающих на территории РФ. 22 сентября 1993 года Правительством РФ было принято Постановление № 948 «О государственной регистрации лиц, пострадавших от радиационного воздействия и подвергшихся радиационному облучению в результате чернобыльской и других радиационных катастроф и инцидентов». Большая часть из наблюдаемых в регистре — это ликвидаторы (184 175 чел.) и жители загрязненных территорий — 336 309 чел. В том числе 214 328 жителей юго-западных районов Брянской области, в наибольшей степени подвергшихся радиационному воздействию. Технология функционирования Регистра предусматривает ежегодную специализированную медицинскую диспансеризацию. Полученные при этом индивидуальные данные поступают в Национальный регистр. Диспансеризацией удается охватить до 80% включенных в Регистр. Эту большую работу проводят 20 региональных центров, четыре из которых расположены в Брянской, Калужской, Орловской и Тульской областях. В базах данных РГМДР накоплено около 3 миллионов диагнозов заболеваний, выявленных у жителей этих областей. На основе данных Регистра подготовлены основные руководящие документы Министерства здравоохранения, ориентированные на минимизацию медицинских последствий аварии на ЧАЭС. Настоящий информационный материал, ориентированный на практических врачей, посвящен двум основным проблемам анализа последствий аварии для населения — возможной индукции раков щитовидной железы в связи с поступлением в организм радионуклидов йода в первые месяцы после аварии и возможным отдаленным эффектам, обусловленным длительным хроническим облучением в малых дозах.

Версии аварии.

За прошедшее десятилетие были сделаны многочисленные попытки разобраться с сущностью Чернобыльской аварии и причинами, приведшими к ней. Законченной и экспериментально подтвержденной версии Чернобыльской аварии до настоящего времени не создано.

Версии возникновения и развития аварии.

Объективное изучение событий, связанных с возникновением и развитием аварии на 4-м энергоблоке Чернобыльской АЭС, началось 27-28 апреля 1986г., когда специалистам стала доступна информация об основных параметрах работы 4-го энергоблока перед аварией и в ее первой фазе, зарегистрированная системами измерения до момента их разрушения.

Версия Межведомственной комиссии.

Версия, разработанная на месте происшествия, состояла в том, что авария произошла вследствие запаривания технологических каналов активной зоны из-за срыва циркуляции в контуре МПЦ. Срыв циркуляции произошел из-за несоответствия расхода питательной воды и расхода теплоносителя в контуре МПЦ. Последующий углубленный анализ тепло-гидравлического режима работы ГЦН, выполненный в конце мая 1986 года разработчиком ГЦН, не подтвердил предположения о срыве и кавитации ГЦН. Было установлено, что наименьший запас до кавитации имел место за 40 секунд до аварии, но был выше того, при котором мог произойти срыв ГЦН.

Версия Минэнерго СССР на основе расчетов ВНИИАЭС.

В конце мая 1986 г. после изучения имевшихся данных и проведения расчетов во Всесоюзном НИИ атомных электростанций (ВНИИАЭС) группа специалистов Минэнерго СССР сделала дополнения к акту, в котором причинами аварии были названы:

- принципиально неверная конструкция стержней СУЗ

- положительный паровой и быстрый мощный коэффициент реактивности

- большой расход теплоносителя при малом расходе питательной воды

- нарушение персоналом регламентного значения оперативного запаса реактивности (ОЗР), малый уровень мощности

- недостаточность средств защиты и оперативной информации для персонала

- отсутствие указаний в проекте и технологическом регламенте об опасности нарушения установленного уровня ОЗР.

Версия Межведомственного НТС.

На заседаниях Межведомственного научно-технического совета (НТС), проведенных 02.06.86 и 17.06.86 , результатам расчетов ВНИИАЭС, продемонстрировавшим, что недостатки конструкции реактора в значительной мере явились причиной катастрофы, не было уделено серьезного внимания. По существу, все причины аварии были сведены исключительно к ошибкам в действиях персонала.

Версия экспертов СССР к сессии МАГАТЭ.

В июле 1986 г. в ходе подготовки к специальной сессии МАГАТЭ был выполнен первый расчетный анализ аварии на упрощенной схеме модели. В докладе, предоставленном советскими экспертами на этой сессии в августе 1986 г., первопр



Последнее изменение этой страницы: 2016-04-26; просмотров: 621; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.89.204.127 (0.015 с.)