Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Теория атома водорода по БоруСодержание книги Поиск на нашем сайте
6.1. Определить энергию фотона, испускаемого при переходе электрона в атоме водорода с третьего энергетического уровня на второй. Ответ: 1,89 эВ. 6.2. Определить максимальную и минимальную энергии фотона в видимой серии спектра водорода (серии Бальмера). Ответ: Emax = 3,41 эВ, Emin = 1,89 эВ. 6.3. Определить длину волны λ, соответствующую второй спектральной линии в серии Пашена. Ответ: 1,28 мкм. 6.4. Максимальная длина волны спектральной водородной линии серии Лаймана равна 0,12 мкм. Предполагая, что постоянная Ридберга неизвестна, определить максимальную длину волны линии серии Бальмера. Ответ: 0,65 мкм. 6.5. Определить длину волны спектральной линии, соответствующую переходу электрона в атоме водорода с шестой боровской орбиты на вторую. К какой серии относится эта линия и которая она по счету? Ответ: 0,41 мкм. 6.6. Определить длины волн, соответствующие: 1) границе серии Лаймана; 2) границе серии Бальмера; 3) границе серии Пашена. Проанализировать результаты. Ответ: 1) 91 нм; 2) 364 нм; 3) 820 нм. 6.7. Атом водорода находится в возбужденном состоянии, характеризуемом главным квантовым числом n = 4. Определить возможные спектральные линии в спектре водорода, появляющиеся при переходе атома из возбужденного состояния в основное. Ответ: 1,21.10-7 м; 1,02.10-7 м; 0,97.10-7 м; 6,54.10-7 м; 4,85.10-7 м; 18,7.10-7 м. 6.8. В инфракрасной области спектра излучения водорода обнаружено четыре серии – Пашена, Брэкета, Пфунда и Хэмфри. Записать сериальные формулы для них и определить самую длинноволновую линию: 1) в серии Пашена; 2) в серии Хэмфри. Ответ: 1) 1,87 мкм, 2) 12,3 мкм. 6.9. Определить число спектральных линий, испускаемых атомарным водородом, возбужденным на n -й энергетический уровень. Ответ: N = n (n – 1)/2. 6.10. На дифракционную решетку с периодом d нормально падает пучок света от разрядной трубки, наполненной атомарным водородом. Оказалось, что в спектре дифракционный максимум k -гo порядка, наблюдаемый под углом φ, соответствовал одной из линий серии Лаймана. Определить главное квантовое число, соответствующее энергетическому уровню, с которого произошел переход. Ответ: n = (1 – ck /(R.d. sinφ))-1/2. 6.11. Используя теорию Бора для атома водорода, определить: 1) радиус ближайшей к ядру орбиты (первый боровский радиус); 2) скорость движения электрона по этой орбите. Ответ: 1) 52,8 пм; 2) 2,19 Мм/с. 6.12. Определить, на сколько изменилась кинетическая энергия электрона в атоме водорода при излучении атомом фотона с длиной волны λ = 4,86.10-7 м. Ответ: На 2,56 эВ. 6.13. Определить длину волны λ спектральной линии, излучаемой при переходе электрона с более высокого уровня энергии на более низкий уровень, если при этом энергия атома уменьшилась на ΔE = 10 эВ. Ответ: 124 нм. 6.14. Используя теорию Бора, определить орбитальный магнитный момент электрона, движущегося по третьей орбите атома водорода. Ответ: рm = en ħ/(2 m) = 2,8.10-23 А.м2. 6.15. Определить изменение орбитального механического момента электрона при переходе его из возбужденного состояния в основное с испусканием фотона с длиной волны λ = 1,02.10-7м. Ответ: Δ L = 2ħ = 2,1.10-34 Дж.с. 6.16. Позитроний – атомоподобная система, состоящая из позитрона и электрона, вращающегося относительно общего центра масс. Применяя теорию Бора, определить минимальные размеры подобной системы. Ответ: dmin = 2ε0 h2 /(π me2) = 106 пм. 6.17. Предполагая, что в опыте Франка и Герца вакуумная трубка наполнена не парами ртути, а разреженным атомарным водородом, определить, через какие интервалы ускоряющего потенциала φ возникнут максимумы на графике зависимости силы анодного тока от ускоряющего потенциала. Ответ: 10,2 В. 6.18. Используя постоянную Планка h, электрическую постоянную ε0, массу m и заряд е электрона, составить формулу для величины, характеризующей атом водорода по Бору и имеющей размерность длины. Указать, что это за величина. 6.19. Определить скорость υ электрона по третьей орбите атома водорода. Ответ: υ = e 2 / (4π.ε0. n. ħ) =0,731 Мм/с. 6.20. Электрон находится на первой боровской орбите атома водорода. Определить для электрона: 1) потенциальную энергию ЕP; 2) кинетическую энергию ЕK; 3) полную энергию Е. Ответ: 1) -27,2 эВ; 2) 13,6 эВ; 3) -13,6 эВ. 6.21. Определить частоту f вращения электрона по третьей орбите атома водорода, Ответ: f = mе 4 / (4 n 3.ε02 .h 3) = 2,42.1014 Гц. 6.22. Определить: 1) частоту f вращения электрона, находящегося на первой боровской орбите; 2) эквивалентный ток. Ответ: 1) 6,58.1015 Гц; 2) 1,06 мА. 6.23. Определить частоту света, излучаемого атомом водорода, при переходе электрона на уровень с главным квантовым числом n = 2, если радиус орбиты электрона изменился в k = 9 раз. Ответ: 0,73.1015 Гц. 6.24. Пользуясь теорией Бора, найти числовое значение постоянной Ридберга. Ответ: R = m . е 4 / (8ε02. h 3) = 3,27.1014 с-1. 6.25. Определить потенциал ионизации атома водорода Ответ: 13,6 В. 6.26. Основываясь на том, что энергия ионизации атома водорода Еi = 13,6 эВ, определить первый потенциал возбуждения φ этого атома. Ответ: 10,2 В. 6.27. Определить первый потенциал возбуждения атома водорода. Ответ: φ1 = 3 R . h / (4 e) = 10,2 В. 6.28. Основываясь на том, что энергия ионизации атома водорода Еi = 13,6 эВ, определить в электрон-вольтах энергию фотона, соответствующую самой длинноволновой линии серии Бальмера. Ответ: 1,89 эВ. 6.29. Основываясь на том, что первый потенциал возбуждения атома водорода φ1 = 10,2 В, определить в электронвольтах энергию фотона, соответствующую второй линии серии Бальмера. Ответ: 2,55 эВ. 6.30. Определить работу, которую необходимо совершить, чтобы удалить электрон со второй боровской орбиты атома водорода за пределы притяжения его ядром. Ответ: 5,45.10-19 Дж. 6.31. Электрон выбит из атома водорода, находящегося в основном состоянии, фотоном энергии ε = 17,7 эВ. Определить скорость электрона за пределами атома. Ответ: 1,2 Мм/с. 6.32. Фотон с энергией E = 12,12 эВ, поглощенный атомом водорода, находящимся в основном состоянии, переводит атом в возбужденное состояние. Определить главное квантовое число этого состояния. Ответ: 3. 6.33. Определить, какие спектральные линии появятся в видимой области спектра излучения атомарного водорода под действием ультрафиолетового излучения с длиной волны λ = 0,1 мкм. Ответ: 4,34.10-7 м; 4,86.10-7 м; 6,56.10-7 м. 6.34. В излучении звезды обнаружен водородоподобный спектр, длины волн которого в 9 раз меньше, чем у атомарного водорода. Определить элемент, которому принадлежит данный спектр. Ответ: Z = 3, литий. 6.35. Применяя теорию Бора к мезоатому водорода (в мезоатоме водорода электрон заменен мюоном, заряд которого равен заряду электрона, а масса в 207 раз больше массы электрона), определить: 1) радиус первой орбиты мезоатома; 2) энергию ионизации мезоатома. Ответ:1) 0,254 пм; 2) 2,81 кэВ. 6.36. Определить, какая энергия требуется для полного отрыва электрона от ядра однократно ионизованного атома гелия, если: 1) электрон находится в основном состоянии; 2) электрон находится в состоянии, соответствующем главному квантовому числу n = 3. Ответ: 1) 54,4 эВ; 2) 6,04 эВ.
Элементы квантовой механики 7.1. Определить импульс и энергию: 1) рентгеновского фотона; 2) электрона, если длина волны того и другого равна 10-10м. Ответ: 1) р =6,63.10-24 кг.м/с, E =12,4 кэВ; 2) р = 6,63·10-24 кг.м/с, Е = 151 эВ. 7.2. Определить длину волны де Бройля для электрона, находящегося в атоме водорода на третьей боровской орбите. Ответ: 1 нм. 7.3. Определить длину волны де Бройля для нейтрона, движущегося со средней квадратичной скоростью при Т = 290 К. Ответ: 148 пм. 7.4. Протон движется в однородном магнитном поле с индукцией B = 15 мТл по окружности радиусом R = 1,4 м. Определить длину волны де Бройля для протона. Ответ: 0,197 пм. 7.5. Определить, какую ускоряющую разность потенциалов должен пройти протон, чтобы длина волны де Бройля λ для него была равна 1 нм. Ответ: 0,821 мВ. 7.6. Заряженная частица, ускоренная разностью потенциалов U = 500 В, имеет длину волны де Бройля λ = 1,282 нм. Принимая заряд этой частицы равным заряду электрона, определить ее массу. Ответ: 1.672.10-27 кг. 7.7. Кинетическая энергия электрона равна 1 кэВ. Определить длину волны де Бройля. Ответ: 38,8 пм. 7.8. Кинетическая энергия электрона равна 0,6 МэВ. Определить длину волны де Бройля. Ответ: 1,26 пм. 7.9. Определить, при каком числовом значении скорости длина волны де Бройля для электрона равна его комптоновской длине волны. Ответ: υ = 2,12·108 м/с. 7.10. Вывести связь между длиной круговой электронной орбиты и длиной волны де Бройля. 7.11. Определить, как изменится длина волны де Бройля электрона атома водорода при переходе его с четвертой боровской орбиты на вторую. Ответ: Уменьшится в 2 раза. 7.12. В опыте Дэвиссона и Джермера, обнаруживших дифракционную картину при отражении пучка электронов от естественной дифракционной решетки – монокристалла никеля, оказалось, что в направлении, составляющем угол α = 55° с направлением падающих электронов, наблюдается максимум отражения четвертого порядка при кинетической энергии электронов Т = 180 эВ. Определить расстояние между кристаллографическими плоскостями никеля. Ответ: d = h . k / (2 cos(α/2)) = 0,206 нм, k – порядок максимума. 7.13. Моноэнергетический пучок нейтронов, получаемый в результате ядерной реакции, падает на кристалл с периодом d = 0,15 мм. Определить скорость нейтронов, если брэгговское отражение первого порядка наблюдается, когда угол скольжения Θ = 30°. Ответ: 2,64 км/с. 7.14. Параллельный пучок моноэнергетических электронов направлен нормально на узкую щель шириной а = 1 мкм. Определить скорость этих электронов, если на экране, отстоящем на расстоянии l = 20 см от щели, ширина центрального дифракционного максимума составляет Δ x = 48 мкм. Ответ: υ = 2 hl / (am .Δ x) = 606 км/с. 7.15. Параллельный пучок электронов, ускоренный разностью потенциалов U = 50 В, направлен нормально на две параллельные, лежащие в одной плоскости, щели, расстояние d между которыми равно 10 мкм. Определить расстояние между центральным и первым максимумами дифракционной картины на экране, который расположен от щелей на расстоянии l = 0,6 м. Ответ: Δ x = 2 hl / (d ) = 10,4 мкм. 7.16. Объяснить, почему представление о боровских орбитах несовместимо с принципом неопределенности. 7.17. Ширина следа электрона (обладающего кинетической энергией Т = 1,5 кэВ) на фотопластинке, полученного с помощью камеры Вильсона, составляет Δ x = 1 мкм. Определить, можно ли по данному следу обнаружить отклонение в движении электрона от законов классической механики. Ответ: Δ px / px = 10-4, нет. 7.18. Электронный пучок ускоряется в электронно-лучевой трубке разностью потенциалов U = 1 кВ. Известно, что неопределенность скорости составляет 0,1 % от ее числового значения. Определить неопределенность координаты электрона. Являются ли электроны в данных условиях квантовыми или классическими частицами? Ответ: Δ x = 38,8 нм. 7.19. Определить отношение неопределенностей скорости электрона, если его координата установлена с точностью до 10-5 м, и пылинки массой m = 10-12 кг, если ее координата установлена с такой же точностью. Ответ: 1,1·1018. 7.20. Электронный пучок выходит из электронной пушки под действием разности потенциалов U = 200 В. Определить, можно ли одновременно измерить траекторию электрона с точностью до 100 нм (с точностью порядка диаметра атома) и его скорость с точностью до 10 %. Ответ: m .Δυ.Δ x < h; нет. 7.21. Электрон движется в атоме водорода по первой боровской орбите. Принимая, что допускаемая неопределенность скорости составляет 10 % от ее числового значения, определить неопределенность координаты электрона. Применимо ли в данном случае для электрона понятие траектории? Ответ: Δ x = 3,34 нм, нет. 7.22. Применяя соотношение неопределенностей, показать, что для движущейся частицы, неопределенность координаты которой равна длине волны де Бройля, неопределенность скорости равна по порядку величины самой скорости частицы. 7.23. Используя соотношение неопределенностей в форме Δ px .Δ x ≥ ħ, оценить минимально возможную полную энергию электрона в атоме водорода. Принять неопределенность координаты равной радиусу атома. Сравнить полученный результат с теорией Бора. Ответ: Emax = – me 4 / (8 h 2.ε02) = -13,6 эВ. 7.24. Объяснить физический смысл соотношения неопределенности для энергии E и времени t: Δ E .Δ t ≥ h. 7.25. Воспользовавшись соотношением неопределенностей, оценить размытость энергетического уровня в атоме водорода: 1) для основного состояния; 2) для возбужденного состояния (время его жизни равно 10-8с). Ответ: 1) 0; 2) 414 нэВ. 7.26. Длина волны λ излучаемого атомом фотона составляет 0,6 мкм. Принимая время жизни возбужденного состояния Δ t = 10-8 c, определить отношение естественной ширины энергетического уровня, на который был возбужден электрон, к энергии, излученной атомом. Ответ: Δ Е / Е = λ / (c .Δ t) = 2.10-7. 7.27. Принимая, что электрон находится внутри атома диаметром 0,3 нм, определить (в электрон-вольтах) неопределенность энергии этого электрона. Ответ: Δ Е = h2 / 2 m . (Δ x) 2 = 16,7 эВ. 7.28. Объяснить, почему физический смысл имеет не сама ψ -функция, а квадрат ее модуля |ψ|2. 7.29. Объяснить, почему волновая функция должна быть конечной, однозначной и непрерывной. 7.30. Записать выражение для вероятности W обнаружения частицы в конечном объеме V, если известна координатная пси-функция частицы ψ(x, y, z). 7.31. Известно, что свободная квантовая частица описывается плоской монохроматической волной де Бройля. Плотность вероятности (вероятность, отнесенная к единице объема) обнаружения свободной частицы |ψ|2 = ψψ* = | А |2 = const. Объяснить, что означает постоянство этой величины. 7.32. Записать уравнение Шредингера для стационарных состояний для свободной частицы, движущейся вдоль оси х, а также определить посредством его решения собственные значения энергии. Что можно сказать об энергетическом спектре свободной частицы? Ответ: E = ħ2. k 2 / (2 m). 7.33. Частица в одномерной прямоугольной «потенциальной яме» шириной l с бесконечно высокими «стенками» находится в основном состоянии. Определить вероятность обнаружения частицы в левой трети «ямы». Ответ: 0,195. 7.34. Частица в одномерной прямоугольной «потенциальной яме» шириной l с бесконечно высокими «стенками» находится в возбужденном состоянии (n = 2). Определить вероятность обнаружения частицы в области 3/8 l ≤ х ≤ 5/8 l. Ответ: 0,091. 7.35. Электрон находится в одномерной прямоугольной «потенциальной яме» шириной l с бесконечно высокими «стенками». Определить вероятность W обнаружения электрона в средней трети «ямы», если электрон находится в возбужденном состоянии (n = 3). Пояснить физический смысл полученного результата, изобразив графически плотность вероятности обнаружения электрона в данном состоянии. Ответ: 1/3. 7.36. Частица в одномерной прямоугольной «потенциальной яме» шириной l с бесконечно высокими «стенками» находится в возбужденном состоянии (n = 3). Определить, в каких точках «ямы» (0 ≤ х ≤ 1) плотность вероятности обнаружения частицы: 1) максимальна; 2) минимальна. Пояснить полученный результат графически. Ответ: 1) l /6, l /2, 5 l /6; 2) l /3, 2 l /3. 7.37. Определить, при какой ширине одномерной прямоугольной «потенциальной ямы» с бесконечно высокими «стенками» дискретность энергетического спектра электрона сравнима с его средней кинетической энергией при температуре Т. Ответ: l = ħ.π / . 7.38. Доказать, что энергия свободных электронов в металле не квантуется. Принять, что ширина l прямоугольной «потенциальной ямы» с бесконечно высокими «стенками» для электрона в металле составляет 10 см. Ответ: Δ E ≈0,75 n .10-16 эВ. 7.39. Частица находится в одномерной прямоугольной «потенциальной яме» с бесконечно высокими «стенками». Определить, во сколько раз изменяется отношение разности соседних энергетических уровней частицы: при переходе от n = 3 к n' = 8. Объяснить физическую сущность полученного результата. Ответ: Уменьшается в 3 раза. 7.40. Частица с энергией E движется в положительном направлении оси x и встречает на своем пути прямоугольный потенциальный барьер высотой U и конечной шириной l, причем E < U. Записать уравнение Шредингера для областей 1, 2 и 3. 7.41. Электрон с энергией Е = 4 эВ движется в положительном направлении оси х, встречая на своем пути прямоугольный потенциальный барьер высотой U = 10 эВ и шириной l = 0,1 нм. Определить коэффициент D прозрачности потенциального барьера. Ответ: 0,1. 7.42. Прямоугольный потенциальный барьер имеет ширину l = 0,1 нм. Определить в электрон-вольтах разность энергий (U – E), при которой вероятность прохождения электрона сквозь барьер составит 0,5. Ответ: 0,454 эВ. 7.43. Протон с энергией Е = 5 эВ движется в положительном направлении оси х, встречая на своем пути прямоугольный потенциальный барьер высотой U = 10 эВ и шириной l = 0,1 нм. Определить: 1) вероятность прохождения протоном этого барьера; 2) во сколько раз надо сузить барьер, чтобы вероятность прохождения его протоном была такой же, как для электрона при вышеприведенных условиях. Ответ: 1) 1,67.10-43; 2) в 42,9 раза. 7.44. Прямоугольный потенциальный барьер имеет ширину l = 0,1 нм. Разность между высотой потенциального барьера и энергией движущегося в положительном направлении оси х электрона U – E = 5 эВ. Определить, во сколько раз изменится коэффициент D прозрачности потенциального барьера для электрона, если разность U – E возрастет в 4 раза. Ответ: Уменьшится в 10 раз. 7.45. Электрон с длиной волны де Бройля λ1 = 100 нм, двигаясь в положительном направлении оси х, встречает на своем пути бесконечно широкий прямоугольный барьер высотой U = 100 эВ. Определить длину волны де Бройля после прохождения барьера. Ответ: λ2 = λ1 / = 172 пм. 7.46. Частица с энергией Е = 50 эВ, двигаясь в положительном направлении оси х, встречает на своем пути бесконечно широкий прямоугольный потенциальный барьер высотой U = 20 эВ. Определить вероятность отражения электрона от этого барьера. Ответ: W = 0,016. 7.47. Частица массой m = 10-19 кг, двигаясь в положительном направлении оси х со скоростью υ = 20 м/с, встречает на своем пути бесконечно широкий прямоугольный потенциальный барьер высотой U = 100 эВ. Определить коэффициент отражения R волн де Бройля на границе потенциального барьера. Ответ: R = 0,146. 7.48. Электрон с длиной волны λ де Бройля, равной 120 пм, движется в положительном направлении оси x и встречает на своем пути бесконечно широкий прямоугольный потенциальный барьер высотой U = 200 эВ. Определить коэффициент отражения R волн де Бройля на границе потенциального барьера. Ответ: R = l. 7.49. Объяснить физический смысл существования энергии нулевых колебаний для квантового гармонического осциллятора. Зависит ли наличие нулевых колебаний от формы «потенциальной ямы»? 7.50. Математический маятник можно рассматривать в качестве гармонического осциллятора. Определить в электрон-вольтах энергию нулевых колебаний для маятника длиной l = 1 м, находящегося в поле тяготения Земли. Ответ: 1,03.10-15 эВ. 7.51. Рассматривая математический маятник массой m = 100 г и длиной l = 0,5м в виде гармонического осциллятора, определить классическую амплитуду А маятника, соответствующую энергии нулевых колебаний этого маятника. Ответ: А = = 1,54.10-17 м.
|
||||
Последнее изменение этой страницы: 2016-04-26; просмотров: 338; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.143.5.248 (0.012 с.) |