Интерфейсы и разъемы видеокарт 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Интерфейсы и разъемы видеокарт



. Стандартным интерфейсом для подключения видеокарт в настоящее время является шина PCI-Express 1.1 (PCIe или PCI-E). Последовательная передача данных в режиме "точка-точка", примененная в PCI-E, обеспечивает возможность ее масштабирования (в спецификациях описываются реализации PCI-Express 1x, 2x, 4x, 8x, 16x и 32x). Как правило, в качестве видеоинтерфейса используется вариант PCI-E 16x, обеспечивающий пропускную способность 4 Гб/с в каждом направлении, хотя изредка встречаются реализации PCI-E 8x (в основном в усеченных SLI- или CrossFire-решениях) и даже PCI-E 4x (в частности, так называемый PCI-Express Lite, реализованный на некоторых материнских платах ECS). При этом следует отметить, что во всех случаях, для установки видеокарт используется единый слот PCI-E 16x, а в усеченных версиях к нему подводится меньшее количество линий PCI-E. В ближайшей перспективе ожидается массовое внедрение новой спецификации PCI-Express 2.0 с увеличенной вдвое пропускной способностью (что в случае PCI-E 16x дает 8 Гб/с в каждом направлении). При этом PCIe 2.0 совместим с PCIe 1.1, то есть старые видеокарты будут нормально работать в новых системных платах, появление которых ожидается уже в 2007 году. Кроме того, спецификация PCI-Express 2.0 расширяет возможности энергоснабжения до 300 Вт на видеокарту, для чего на видеокартах вводится новый 2 x 4-штырьковый разъем питания.

Устаревший, но еще широко используемый видеоинтерфейс AGP (Accelerated Graphics Port - видео порт с повышенной скоростью передачи данных), основан на параллельной 32-битной шине PCI. В отличие от прототипа, она предоставляет прямую связь между центральным процессором и видеочипом, а также более высокую тактовую частоту (66 МГц вместо 32 МГц), упрощенные протоколы передачи данных и другие.

Существует несколько вариантов шины AGP, отличающихся по пропускной способности:

  • AGP 1х - 266 Мб/с;
  • AGP 2х - 533 Мб/с;
  • AGP 4х -1,07 Гб/с;
  • AGP 8х - 2,1 Гб/с.

Понятно, что чем выше пропускная способность графического интерфейса, тем лучше. Но в настоящее время разница в пропускной способности интерфейсов AGP и PCI-E 1.1 (не говоря о PCI-E 2.0) если и влияет на производительность видеосистемы, то не слишком, так что главное преимущество PCI-Express не в его высокой производительности, а в возможности масштабирования, позволяющей устанавливать в компьютер две, три и даже четыре видеокарты.

  • Для подключения внешних видеоустройств на видеокартах, могут использоваться аналоговые интерфейсы VGA, RCA, S-Video и цифровые - DVI и HDMI: до последнего времени основным интерфейсом для вывода изображения на ЭЛТ и ЖК-мониторы являлся аналоговый VGA-выход (15-контактный разъем D-Sub);
  • аналоговый разъем S-Video (или S-VHS) применяется в основном для вывода компьютерного изображения на бытовые телевизоры и другую домашнюю видеотехнику. Существенным недостатком этого интерфейса является то, что в современных видеокартах могут использоваться несколько вариантов разъема S-Video, с разным количеством контактов и не всегда совместимых друг с другом;
  • современные ЖК-мониторы, проекторы, телевизоры и плазменные панели могут подключаться к видеокартам по цифровому видеоинтерфейсу DVI (Digital Visual Interface). За счет того, что видеосигнал передается напрямую с видеокарты без двойного цифро/аналогового преобразования, DVI обеспечивает неискаженную передачу изображения, особенно заметную в высоких разрешениях. Интерфейс DVI может быть как исключительно цифровой DVI-D, так и комбинированный DVI-I, в котором наряду с цифровыми линиями имеются и аналоговые (VGA). Монитор с аналоговым VGA-разъемом подключается к DVI-I через специальный переходник;
  • разновидностью DVI является интерфейс Dual-Link DVI, обеспечивающий поддержку высокого разрешения (выше 1920 х 1200) по цифровому выходу DVI. Физически Dual-Link DVI является объединением двух отдельных каналов DVI в одном кабеле, что удваивает его пропускную способность;
  • мультимедийный интерфейс HDMI (High Definition Multimedia Interface) присутствует в некоторых новых видеокартах, телевизорах и других домашних мультимедийных устройствах. Главная особенность HDMI - возможность передавать по одному кабелю на расстояние до 10 м наряду с цифровым видеосигналом еще и аудио без потери качества. Благодаря этому количество соединительных проводов (настоящий бич современных мультимедийных систем) существенно уменьшается.

Архитектура звуковой карты

(звуковая плата, аудиокарта; англ. sound card) — дополнительное оборудование персонального компьютера, позволяющее обрабатывать звук (выводить на акустические системы и/или записывать). На момент появления звуковые платы представляли собой отдельные карты расширения, устанавливаемые в соответствующий слот. В современных материнских платах представлены в виде интегрированного в материнскую плату аппаратного кодека (согласно спецификации Intel AC’97 или Intel HD Audio).

Аудио кодек преобразует данные цифрового звука в аналоговые звуковые сигналы для воспроизведения через динамики и выполняет обратную операцию для записи через микрофон. Другие обычные звуковые входы и выходы, которые взаимодействуют с кодеком, включают гарнитуры, наушники, телефоны, громкую связь, линейный вход и линейный выход. Кодек также предлагает функциональность микшера, который подключён к комбинации этих аудио входов и выходов, а также управляет уровнем громкости соответствующих звуковых сигналов.

Это определение микшера с точки зрения программного обеспечения. Микширование звука или микширование данных относится к способности некоторых кодеков смешивать несколько звуковых потоков и создавать единый поток. Это необходимо, например, если вы хотите наложить объявление во время ведения голосового общения по IP телефону. Библиотека alsa-lib, которая обсуждается в последней части этой главы, поддерживает подключаемый модуль, называющийся dmix, который выполняет микширование данных программным образом, если кодек не способен выполнять эту операцию на аппаратном уровне.

Цифровые аудио данные получаются путём измерения аналоговых звуковых сигналов с определёнными частотами, с использованием техники, названной импульсно-кодовой модуляцией, pulse code modulation (PCM). Качеством компакт диска, например, является звук с частотой дискретизации 44.1 кГц, использующий 16 бит для каждого отсчёта. Кодек отвечает за записи звука путём дискретизации на поддерживаемых PCM скоростях передачи и воспроизведение звука, изначально дискретизированного с различными скоростями PCM.

Звуковая карта может поддерживать один или несколько кодеков. Каждый кодек, в свою очередь, поддерживает один или более аудио подпотоков в моно или стерео.

Примерами стандартных интерфейсов подключения звуковых контроллеров являются кодеки Audio Codec'97 (AC'97) и шина Inter-IC Sound (I2S):

•Спецификация Intel AC'97, доступная на http://download.intel.com/, определяет семантику и адреса аудио-регистров. Регистры конфигурации являются частью звукового контроллера, а пространство регистров ввода/вывода находится внутри этого кодека. Запросы для работы с регистрами ввода/вывода пересылаются аудио контроллером кодеку через соединение АС'97. Например, регистр, который управляет громкостью входной линии, находится в пространстве ввода/вывода AC'97 по смещению 0x10. Система ПК на Рисунке 13.1 для связи с внешним кодеком использует AC'97.
•Спецификация I2S, доступная на www.nxp.com/acrobat_download/various/I2SBUS.pdf, является стандартным интерфейсом кодека, разработанным Philips. Встроенное устройство, показанное на Рисунке 13.2, для передачи аудио данных в кодек использует I2S. Программирование регистров ввода/вывода кодека осуществляется через шину I2C.

AC'97 имеет ограничения, касающиеся количества поддерживаемых каналов и скоростей передачи. Последние наборы микросхем Южного моста от Intel поддерживают новую технологию под названием High Definition (HD) Audio (Звук высокого качества), которая предлагает высококачественный, объёмный звук и возможности многопоточности.

Технология генерации звука

Генерация звуков в компьютере PC выполняется с помощью программируемого таймера 8253, который применяется для управления колебаниями динамика. Управление колебаниями динамика определяется частотой, которая, в свою очередь, определяется содержимым различных внутренних регистров. Значения этих регистров устанавливаются при записи в определенные порты. Порт 66 используется для спецификации счетчика, который использует таймер при определении интервала колебаний динамика. Таймер работает в строгом соответствии с частотой системного таймера и специфицированным значением счетчика, определяющим колебания динамика. Затем, после обнуления счетчика происходит установка нового значения счетчика, и весь цикл функционирования программируемого таймера повторяется сначала.

Типы звуковых карт.

Существует 3 типа звуковых карт:



Поделиться:


Последнее изменение этой страницы: 2016-04-25; просмотров: 441; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.19.56.45 (0.008 с.)