Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Где R имеет размерность Ом/квадрат.Содержание книги Поиск на нашем сайте
Ширину резистивной линии принимают обычно не менее 0,2 мм, так как более узкая линия может приводить к обрывам из-за дефектов маски или подложки, а также из-за наличия случайных пылинок. Кроме того, чем уже линия, тем сильнее влияет зона подпыления или тень в щели маски на получение требуемого номинала сопротивления. Практически установлено, что лучше всего изготавливать резисторы прямоугольной формы. При одной и той же толщине резистивной пленки можно получать различные сопротивления, отличающиеся по номиналу в десятки раз. Для этого достаточно изменять отношение длины пленки к ее ширине. Максимальная мощность, рассеиваемая на резисторе, ограничена ее допустимой температурой и зависит от теплопроводности подложки, ее материала, отношения площади, занятой резистором, к всей площади подложки, а также от выбранного способа охлаждения и температуры окружающей среды. Материал, используемый для изготовления резистивных пленок, должен обеспечивать возможность получения широкого диапазона стабильных во времени сопротивлений, обладать низким температурным коэффициентом сопротивления и высокой коррозийной стойкостью. При напылении он должен образовывать тонкие, четкие линии с хорошей повторяемостью их от образца к образцу. Характеристики некоторых материалов, применяемых при изготовлении тонкопленочных резисторов, приведены в табл. 3. Таблица 3. Характеристики материалов пленочных резисторов
Следует отметить, что указанные в таблице значения являются ориентировочными, так как они существенно зависят от метода нанесения пленки и режима ее обработки. Удельное сопротивление пленки определяется как ее составом, так и структурой, которая изменяется в процессе термообработки.
Рис. 4. Зависимость удельного сопротивления пленки от ее толщины: I-область туннельного эффекта; II-область нарушенной поверхности; III-область объемных свойств. На рис. 4 показана типичная зависимость удельного сопротивления пленки от ее толщины. При малых толщинах свойства пленки существенно зависят от характера микронеровностей на поверхности подложки. В этой области могут наблюдаться нарушения непрерывности структуры пленки. Проводимость здесь обусловлена туннельным эффектом и термоэлектронной эмиссией между отдельными кристаллитами. Наиболее целесообразно использовать пленки такой толщины, при которой становятся заметными их объемные свойства. В этом случае легче регулировать толщину пленки, а нарушения поверхности не имеют большого значения. Металлическая пленка толщиной порядка 1нм независимо от природы металла имеет большое удельное электрическое сопротивление, которое экспоненциально уменьшается с увеличение толщины. Пленки такой малой толщины весьма не стабильны и почти не применяются. Для того чтобы заведомо получить сплошную пленку при имеющихся в производстве отклонениях от выбранного технологического режима, считают, что толщина пленки, наносимая вакуумным испарением, должна быть порядка 100 нм. Следует отметить, что пленки тугоплавких металлов могут быть более тонкими, так как они обладают более стабильными характеристиками. Тонкопленочные резисторы можно изготавливать из металлов, сплавов (в том числе многокомпонентных), полупроводников и керметов(смесей металлов с керамикой). Широкое распространение находит хромированный сплав (20% хрома и 80% никеля). Поверхностное сопротивление пленки из этого сплава достигает 300 Ом/квадрат при малом температурном коэффициенте сопротивления. Температура испарения сплава значительная(1600оС), причем для получения высококачественного пленочного резистора подложка должна нагреваться до 300-350оС. Из сплава железа с хромом(79% железа, 21% хрома) и железоникелевого сплава (71,5% железа, 21% хрома, 7,5% никеля) изготавливают пленки, обладающие сопротивлением 150 Ом/квадрат, с температурным коэффициентом сопротивления не более 1*10-4 1/оС. Значительно большее поверхностное сопротивление (до 400 Ом/квадрат) имеет многокомпонентный сплав, состоящий из 74% никеля, 20% хрома, 3% железа и 3% алюминия. Стабильность металлических пленок зависит до некоторой степени от температуры плавления металла, его плотности и возможности образования стабильности окисного поверхностного слоя. Как правило, чем выше температура плавления, тем лучше стабильность пленки. Вольфрам образует высокостабильные пленки в вакууме, однако они нестабильны в воздухе. Свойствами, обеспечивающими образование высокостабильных пленок, обладает рений – тугоплавкий металл, который находит все большее применение для получения пленочных резисторов. В случае, когда необходимо получить высокостабильные пленки с большим поверхностным сопротивлением (несколько тысяч Ом на квадрат) и малым температурным коэффициентом сопротивления, применяют тантал. Это объясняется еще и тем, что поверхность тантала легко покрывается пленкой окиси и становится малоактивной, хотя сам металл относится к активным; тонкий прозрачный поверхностный слой окиси хорошо связан с танталом, обладает высоким сопротивлением износу и коррозии в различных атмосферных условиях и не поддается воздействию многих кислот; реакция окисления тантала легко управляется и может быть использована для регулирования толщины пленки и ее сопротивления; пятиокись тантала является хорошим диэлектриком, что позволяет использовать его для изготовления и пленочных конденсаторов. Большим поверхностным сопротивлением (до 10000 Ом/квадрат) обладают пленки из сплава, содержащего 24% хрома и 76% кремния. Напыление пленок в данном случае производится по методу «вспышки», при котором порошок или небольшие кусочки сплава падают на разогретый до высокой температуры вольфрамовый испаритель. Образующееся при этом облако пара конденсируется на подложке, нагретой до 200-500оС. Полученные таким путем пленки отличаются малым температурным коэффициентом сопротивления (5*10-5 1/оС) и высокой стабильностью (после 2000ч работы изменение сопротивления не превышает 0,2%, а после 5000ч – 3%). Еще большим поверхностным сопротивлением (до 50000 Ом/квадрат) обладают пленки из керметов. Типичными керметами являются пленки палладиево-серебряной глазури или танталово-хромового стекла. Резисторы на основе этих пленок используют в схемах, где допустим высокий температурный коэффициент сопротивления. Наиболее удачна пленка из смеси из моноокиси кремния и хрома. Она однородна, стабильна, имеет высокие адгезионные свойства, высокую теплостойкость и хорошие механические свойства. Сопротивление пленки изменяется в широких пределах в зависимости от состава смеси. Наилучшие характеристики имеют пленки, содержащие 70% хрома и 30% моноокиси кремния. Испарение смеси производится с вольфрамовой спирали при температуре 1300-1600оС на подложку, нагретую до 200-250оС. После напыления пленки ее нагревают в контролируемой среде при температуре 400-450оС для стабилизации параметров. Для регулирования осаждения резистивных пленок в рабочий объем вакуумной установки вблизи напыляемых подложек помещают контрольную подложку с серебряными контактами (свидетель). Когда сопротивление между контактами контрольной подложки достигает определенной величины, испарение прекращается поворотом заслонки. Как показывает опыт, сопротивление обычно уменьшается после того, как подложка извлекается из вакуумной системы, или при ее дальнейшей термообработке. Это объясняется тем, что атомы газа или другие примесные атомы сорбируются пленкой в процессе ее напыления, а затем при нагреве химически реагируют с ней. Другой причиной является возникновение в материале пленки напряжений, которые могут изменяться в процессе отжига.
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-04-26; просмотров: 1842; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.146.107.144 (0.008 с.) |