![]() Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву ![]() Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Обработка неравнорассеянных рядов наблюденийСодержание книги
Поиск на нашем сайте
В практике исследовательских работ часто встречаются ситуации, когда необходимо найти наиболее достоверное значение величины и оценить его возможные отклонения от истинного значения на основании измерений, проводимых разными наблюдателями с применением разнообразных измерительных средств и методов измерений в различных лабораториях или условиях внешней среды. Ряды получающихся при этом результатов наблюдений называются неравнорассеянными, если оценки их дисперсий значительно отличаются друг от друга, а средние арифметические являются оценками одного и того же значения измеряемой величины. Если средние неравнорассеянных рядов наблюдений мало отличаются друг от друга, то говорят о высокой воспроизводимости измерений, которая количественно характеризуется параметрами рассеивания результатов. Рассмотрим некоторые случаи, приводящие к необходимости обработки результатов неравнорассеянных измерений: 1. Если при точных измерениях необходимо убедиться в отсутствии неисключенных систематических погрешностей, то измерения проводятся несколькими исследователями или группами исследователей. Если средние арифметические полученных рядов наблюдений незначительно отличаются друг от друга и ничто не указывает на наличие систематических погрешностей, то заманчиво объединить все полученные результаты и на основе их математической обработки получить более достоверные сведения об измеряемой величине. 2. Аналогичные измерения были выполнены в разных лабораториях различными методами и получены отличающиеся друг от друга результаты. Естественно и в этом случае, используя все имеющиеся данные, попытаться получить более достоверные значения измеряемых величин. 3. Измерения, относящиеся к образцовым мерам и измерительным приборам, часто повторяются через некоторое время. В конце концов накапливаются ряды наблюдений и возникает необходимость объединить их. Точность рядов наблюдений различна, с одной стороны, из-за того, что для впервые проводимых измерений характерно большее рассеивание результатов, а с другой стороны, из-за того, что с течением времени средства измерения стареют или заменяются новыми. Во всех описанных ситуациях приходится прибегать к методам обработки результатов неравнорассеянных рядов наблюдений, задача которых в общем случае заключается в нахождении наиболее достоверного значения измеряемой величины и оценки воспроизводимости измерений.
Основой для расчета служат следующие данные:
Если результаты наблюдений во всех рядах распределены нормально, то нормально распределены и все m средних арифметических
Для практической обработки результатов неравнорассеянных рядов наблюдений необходимо ввести параметр вес отдельных средних арифметических:
Веса характеризуют степень нашего доверия к соответствующим рядам наблюдений. Чем больше число наблюдений в каждом данном ряду и чем меньше дисперсия результатов наблюдений, тем больше степень доверия к полученному при этом среднему арифметическому и с тем большим весом оно будет учтено при определении оценки истинного значения измеряемой величины
Иногда удобно пользоваться безразмерными весовыми коэффициентами
В соответствии со свойствами оценок максимального правдоподобия дисперсия среднего взвешенного должна равняться единице, деленной на математическое ожидание второй производной от логарифмической функции правдоподобия:
Отсюда следует, что дисперсия среднего взвешенного меньше дисперсии любого из исходных средних арифметических отдельных рядов наблюдений и поэтому при обработке неравнорассеянных рядов наблюдений точность измерений повышается. Если теоретические дисперсии При малом числе нормально распределенных результатов наблюдений пользуются распределением Стьюдента с числом степеней свободы
Если же об исходных распределениях нет никаких заслуживающих внимания данных, то на основании центральной предельной теоремы можно все-таки предполагать, что распределение среднего взвешенного нормально, поскольку оно является суммой большого числа случайных величин с конечными дисперсиями и математическими ожиданиями. Пример. Тремя коллективами экспериментаторов с помощью различных методов измерения были получены следующие значения ускорения свободного падения (со среднеквадратическими отклонениями результатов измерений): Весовые коэффициенты отдельных результатов вычислим по формуле (68): Среднее взвешенное в соответствии с уравнением (69) составляет:
|
||||||||||||||||
Последнее изменение этой страницы: 2016-04-23; просмотров: 241; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.116.90.183 (0.011 с.) |