Полупроводниковые приборы. Интегральные схемы



Мы поможем в написании ваших работ!


Мы поможем в написании ваших работ!



Мы поможем в написании ваших работ!


ЗНАЕТЕ ЛИ ВЫ?

Полупроводниковые приборы. Интегральные схемы



Интегральной микросхемой называют совокупность большого числа взаимосвязанных элементов – сверхмалых диодов, транзисторов, конденсаторов, резисторов, соединительных проводов, изготовленных в едином технологическом процессе на одном кристалле. Микросхема размером в 1 см2 может содержать несколько сотен тысяч микроэлементов.

Применение микросхем привело к революционным изменениям во многих областях современной электронной техники. Это особенно ярко проявилось в электронной вычислительной технике. На смену громоздким ЭВМ, содержащим десятки тысяч электронных ламп и занимавшим целые здания, пришли персональные компьютеры.

Магистрально-модульный принцип архитектуры ПЭВМ

В основу архитектуры современных персональных компьютеров положен магистрально-модульный принцип. Модульный принцип позволяет потребителю самому комплектовать нужную ему конфигурацию компьютера и производить при необходимости ее модернизацию. Модульная организация компьютера опирается на магистральный (шинный) принцип обмена информацией между устройствами.

Магистраль включает в себя три многоразрядные

· шины: шину данных,

· шину адреса

· и шину управления.

Шины представляют собой многопроводные линии.
Шина данных. По этой шине данные передаются между различными устройствами. Например, считанные из оперативной памяти данные могут быть переданы процессору для обработки, а затем полученные данные могут быть отправлены обратно в оперативную память для хранения. Таким образом, данные по шине данных могут передаваться от устройства к устройству в любом направлении.
Разрядность шины данных определяется разрядностью процессора, т.е. количеством двоичных разрядов, которые процессор обрабатывает за один такт. Разрядность процессоров постоянно увеличивалась по мере развития компьютерной техники.

 

Общие принципы фон Неймана

В основу построения подавляющего большинства компьюте­ров положены следующие общие принципы, сформулированные в 1945 г. американским ученымДжоном фон Нейманом.

Принцип программного управления. Программа состоит из набора команд, выполняющихся процессором автоматически в определенной последовательности.
Выборка программы из памяти осуществляется с помощью счетчика команд. Этот регистр процессора последовательно увеличивает хранимый в нем адрес очередной команды на длину команды. А так как команды программы расположены в памяти друг за другом, то тем самым организуется выборка цепочки команд из последовательно расположенных ячеек памяти. Если же нужно после выполнения команды перейти не к следующей, а к какой-то другой, используются командыусловного илибезусловного перехода, которые заносят в счетчик команд номер ячейки памяти, содержащей следующую команду. Выборка команд из памяти прекращается после достижения и выполнения команды «стоп».
Таким образом,процессор исполняет программу автоматически, без вмешательства человека.

Принцип однородности памяти. Программы и данные хранятся в одной и той же памяти, поэтому компьютер не различает, что хранится в данной ячейке памяти — число, текст или команда. Над командами можно выполнять такие же действия, как и над данными.
Это открывает целый ряд возможностей. Например,программа в процессе своего выполнения также может подвергаться переработке, что позволяет задавать в самой программе правила получения некоторых ее частей (так в программе организуется выполнение цик­лов и подпрограмм).
Более того, команды одной программы могут быть получены как результаты исполнения другой программы. На этом принципе основаныметоды трансляции — перевода текста программы с языка программирования высокого уровня на язык конкретной машины.

Принцип адресности. Структурно основная память состоит из перенумерованных ячеек. Процессору в произвольный момент времени доступна любая ячейка.
Отсюда следует возможность давать имена областям памяти так, чтобы к запомненным в них значениям можно было впоследствии обращаться или менять их в процессе выполнения программ с использованием присвоенных имен.
Компьютеры, построенные на перечисленных принципах, относятся к типуфон-неймановских. Но существуют компьютеры, принципиально отличающиеся от фон-неймановских. Для них, например, может не выполняться принцип программного управления, т. е. они могут работать без счетчика команд, указывающего текущую выполняемую команду программы. Для обращения к какой-либо переменной, хранящейся в памяти, этим компьютерам необязательно давать ей имя. Такие компьютеры называются не фон-неймановскими.

Статическая оперативная память

Рассмотрим для примера хорошо известную оперативную память с произвольным доступом, именуемую также RAM-памятью (Random Access Memory). По принципам действия RAM-память можно разделить на динамическую и статическую.

В статической памяти ячейки построены на различных вариантах триггеров — на транзисторных схемах с двумя устойчивыми состояниями. После записи бита в такую ячейку она может находиться в одном из этих состояний и сохранять записанный бит как угодно долго: необходимо только наличие питания. Отсюда и название памяти — статическая, то есть пребывающая в неизменном состоянии. Достоинством статической памяти является ее быстродействие, а недостатками — высокое энергопотребление и низкая удельная плотность данных, поскольку одна триггерная ячейка состоит из нескольких транзисторов и, следовательно, занимает довольно много места на кристалле.

 

Динамическая оперативная память

И статическая, и динамическая RAM-память представляет собой энергозависимую память, которая способна сохранять информационные биты только при наличии внешнего питания. Соответственно при отключении питания вся информация теряется.

Энергозависимая память

Эне́ргозави́симая па́мять (англ. Volatile memory) — компьютерная память, которая требует постоянного использования электропитания для возможности удерживать записанную на неё информацию. Эта особенность является ключевым отличием энергозависимой памяти от энергонезависимой — последняя сохраняет записанную на неё информацию даже после прекращения подачи электропитания на неё. Энергозависимая память также изредка называется вре́менной памятью

И статическая, и динамическая RAM-память представляет собой энергозависимую память, которая способна сохранять информационные биты только при наличии внешнего питания. Соответственно при отключении питания вся информация теряется

 

43. Архитектура ПЗУ-ROM памяти

Простейшим примером энергонезависимой памяти является ROM (Read-Only Memory), известная также как ПЗУ (постоянное запоминающее устрой-ство). В такой памяти массив ячеек представляет собой набор проводников, некоторое из которых остаются целыми, а остальные разрушаются. Данные проводники, выполняющие роль элементарных переключателей, органи-зуются в матрицу путем подсоединения к линиям столбцов и строк (рис. 37). Замкнутому состоянию проводника можно присвоить значение логического нуля, а разомкнутому — логической единицы. Если теперь измерить напря-жение между одной из линий столбцов и строк (то есть получить доступ к определенной ячейке памяти), то его высокое значение (разомкнутое состо-яние проводника) соответствует логической единице, а нулевое (замкнутое состояние проводника) — логическому нулю.

Основным недостатком ПЗУ является невозможность обновлять содержимое ячеек памяти, то есть записывать информацию. Когда-то такая память использовалась для хранения BIOS, однако сегодня этот тип памяти уже не применяется.

Флеш-память

Принципиальное отличие флэш-памяти от RAM-памяти заключается в том, что это энергонезависимая память, способная в течение неограниченного времени сохранять информацию при отсутствии внешнего питания.

В принципе, существует несколько типов энергонезависимой памяти, и в этом смысле флэш-память — лишь одна из ее разновидностей.

Между флэш-памятью и динамической RAM-памятью, равно как и ROM-памятью, есть много общего. Принципиальное различие заключается прежде всего в строении самой элементарной ячейки. Если в динамической памяти элементарной ячейкой является конденсатор, то во флэш-памяти роль ячейки памяти выполняет CMOS-транзистор особой архитектуры. И если в обычном CMOS-транзисторе имеется три электрода (сток, исток и затвор), то во флэш-транзисторе (в простейшем случае) добавляется еще один затвор, называемый плавающим.

 

Перезаписываемые ПЗУ

тип энергонезависимой памяти — перезаписываемое ПЗУ (ППЗУ) или EPROM (Erasable Programmable Read-Only Memory). К ним относятся:

-перепрограммируемые ПЗУ с электрической записью информации

и стиранием ультрафиолетовым излучением (УФППЗУ) — основа ячейки памяти микросхемы данного типа — МОП-транзистор с полностью изолированным «плавающим» затвором, при программировании окисел пробивается и на затворе накапливается заряд, который сохраняется там пока микросхема не будет подвергнута УФ-облучению, под его действием окисел

становится проводящим; сопротивление канала транзистора зависит от заряда на затворе и будет определять бит, записанный в ячейку;

-электрически стираемые ПЗУ(ЕЕPRОМ) устроены аналогично

УФППЗУ, но стирание происходит, как и запись, при подаче импульсов

напряжения; это самый дорогой, но и самый удобный тип ПЗУ. Такая память может быть перезаписана только с помощью специальных программаторов. В настоящее время из-за сложности процесса перезаписи на смену ППЗУ приходит флэш-память (Flash Memory).

Структура ПЗУ

Простейшим примером энергонезависимой памяти является ROM (Read-Only Memory), известная также как ПЗУ (постоянное запоминающее устрой-ство). В такой памяти массив ячеек представляет собой набор проводников, некоторое из которых остаются целыми, а остальные разрушаются. Данные проводники, выполняющие роль элементарных переключателей, органи-зуются в матрицу путем подсоединения к линиям столбцов и строк (рис. 37). Замкнутому состоянию проводника можно присвоить значение логического нуля, а разомкнутому — логической единицы. Если теперь измерить напря-жение между одной из линий столбцов и строк (то есть получить доступ к определенной ячейке памяти), то его высокое значение (разомкнутое состо-яние проводника) соответствует логической единице, а нулевое (замкнутое состояние проводника) — логическому нулю.

Рисунок 37 - Структура ПЗУ



Последнее изменение этой страницы: 2016-04-21; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.227.235.216 (0.011 с.)