Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Полупроводниковые приборы. Интегральные схемыСодержание книги
Поиск на нашем сайте
Интегральной микросхемой называют совокупность большого числа взаимосвязанных элементов – сверхмалых диодов, транзисторов, конденсаторов, резисторов, соединительных проводов, изготовленных в едином технологическом процессе на одном кристалле. Микросхема размером в 1 см2 может содержать несколько сотен тысяч микроэлементов. Применение микросхем привело к революционным изменениям во многих областях современной электронной техники. Это особенно ярко проявилось в электронной вычислительной технике. На смену громоздким ЭВМ, содержащим десятки тысяч электронных ламп и занимавшим целые здания, пришли персональные компьютеры. Магистрально-модульный принцип архитектуры ПЭВМ В основу архитектуры современных персональных компьютеров положен магистрально-модульный принцип. Модульный принцип позволяет потребителю самому комплектовать нужную ему конфигурацию компьютера и производить при необходимости ее модернизацию. Модульная организация компьютера опирается на магистральный (шинный) принцип обмена информацией между устройствами. Магистраль включает в себя три многоразрядные · шины: шину данных, · шину адреса · и шину управления. Шины представляют собой многопроводные линии.
Общие принципы фон Неймана В основу построения подавляющего большинства компьютеров положены следующие общие принципы, сформулированные в 1945 г. американским ученым Джоном фон Нейманом. Принцип программного управления. Программа состоит из набора команд, выполняющихся процессором автоматически в определенной последовательности. Принцип однородности памяти. Программы и данные хранятся в одной и той же памяти, поэтому компьютер не различает, что хранится в данной ячейке памяти — число, текст или команда. Над командами можно выполнять такие же действия, как и над данными. Принцип адресности. Структурно основная память состоит из перенумерованных ячеек. Процессору в произвольный момент времени доступна любая ячейка. Статическая оперативная память Рассмотрим для примера хорошо известную оперативную память с произвольным доступом, именуемую также RAM-памятью (Random Access Memory). По принципам действия RAM-память можно разделить на динамическую и статическую. В статической памяти ячейки построены на различных вариантах триггеров — на транзисторных схемах с двумя устойчивыми состояниями. После записи бита в такую ячейку она может находиться в одном из этих состояний и сохранять записанный бит как угодно долго: необходимо только наличие питания. Отсюда и название памяти — статическая, то есть пребывающая в неизменном состоянии. Достоинством статической памяти является ее быстродействие, а недостатками — высокое энергопотребление и низкая удельная плотность данных, поскольку одна триггерная ячейка состоит из нескольких транзисторов и, следовательно, занимает довольно много места на кристалле.
Динамическая оперативная память И статическая, и динамическая RAM-память представляет собой энергозависимую память, которая способна сохранять информационные биты только при наличии внешнего питания. Соответственно при отключении питания вся информация теряется. Энергозависимая память Эне́ргозави́симая па́мять (англ. Volatile memory) — компьютерная память, которая требует постоянного использования электропитания для возможности удерживать записанную на неё информацию. Эта особенность является ключевым отличием энергозависимой памяти от энергонезависимой — последняя сохраняет записанную на неё информацию даже после прекращения подачи электропитания на неё. Энергозависимая память также изредка называется вре́менной памятью И статическая, и динамическая RAM-память представляет собой энергозависимую память, которая способна сохранять информационные биты только при наличии внешнего питания. Соответственно при отключении питания вся информация теряется
43. Архитектура ПЗУ-ROM памяти Простейшим примером энергонезависимой памяти является ROM (Read-Only Memory), известная также как ПЗУ (постоянное запоминающее устрой-ство). В такой памяти массив ячеек представляет собой набор проводников, некоторое из которых остаются целыми, а остальные разрушаются. Данные проводники, выполняющие роль элементарных переключателей, органи-зуются в матрицу путем подсоединения к линиям столбцов и строк (рис. 37). Замкнутому состоянию проводника можно присвоить значение логического нуля, а разомкнутому — логической единицы. Если теперь измерить напря-жение между одной из линий столбцов и строк (то есть получить доступ к определенной ячейке памяти), то его высокое значение (разомкнутое состо-яние проводника) соответствует логической единице, а нулевое (замкнутое состояние проводника) — логическому нулю. Основным недостатком ПЗУ является невозможность обновлять содержимое ячеек памяти, то есть записывать информацию. Когда-то такая память использовалась для хранения BIOS, однако сегодня этот тип памяти уже не применяется. Флеш-память Принципиальное отличие флэш-памяти от RAM-памяти заключается в том, что это энергонезависимая память, способная в течение неограниченного времени сохранять информацию при отсутствии внешнего питания. В принципе, существует несколько типов энергонезависимой памяти, и в этом смысле флэш-память — лишь одна из ее разновидностей. Между флэш-памятью и динамической RAM-памятью, равно как и ROM-памятью, есть много общего. Принципиальное различие заключается прежде всего в строении самой элементарной ячейки. Если в динамической памяти элементарной ячейкой является конденсатор, то во флэш-памяти роль ячейки памяти выполняет CMOS-транзистор особой архитектуры. И если в обычном CMOS-транзисторе имеется три электрода (сток, исток и затвор), то во флэш-транзисторе (в простейшем случае) добавляется еще один затвор, называемый плавающим.
Перезаписываемые ПЗУ тип энергонезависимой памяти — перезаписываемое ПЗУ (ППЗУ) или EPROM (Erasable Programmable Read-Only Memory). К ним относятся: -перепрограммируемые ПЗУ с электрической записью информации и стиранием ультрафиолетовым излучением (УФППЗУ) — основа ячейки памяти микросхемы данного типа — МОП-транзистор с полностью изолированным «плавающим» затвором, при программировании окисел пробивается и на затворе накапливается заряд, который сохраняется там пока микросхема не будет подвергнута УФ-облучению, под его действием окисел становится проводящим; сопротивление канала транзистора зависит от заряда на затворе и будет определять бит, записанный в ячейку; -электрически стираемые ПЗУ(ЕЕPRОМ) устроены аналогично УФППЗУ, но стирание происходит, как и запись, при подаче импульсов напряжения; это самый дорогой, но и самый удобный тип ПЗУ. Такая память может быть перезаписана только с помощью специальных программаторов. В настоящее время из-за сложности процесса перезаписи на смену ППЗУ приходит флэш-память (Flash Memory). Структура ПЗУ Простейшим примером энергонезависимой памяти является ROM (Read-Only Memory), известная также как ПЗУ (постоянное запоминающее устрой-ство). В такой памяти массив ячеек представляет собой набор проводников, некоторое из которых остаются целыми, а остальные разрушаются. Данные проводники, выполняющие роль элементарных переключателей, органи-зуются в матрицу путем подсоединения к линиям столбцов и строк (рис. 37). Замкнутому состоянию проводника можно присвоить значение логического нуля, а разомкнутому — логической единицы. Если теперь измерить напря-жение между одной из линий столбцов и строк (то есть получить доступ к определенной ячейке памяти), то его высокое значение (разомкнутое состо-яние проводника) соответствует логической единице, а нулевое (замкнутое состояние проводника) — логическому нулю. Рисунок 37 - Структура ПЗУ
|
||||
Последнее изменение этой страницы: 2016-04-21; просмотров: 158; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.190.253.224 (0.007 с.) |