Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Уравнение плоскости в отрезках

Поиск

где a, b, c - величины отрезков, отсекаемых плоскостью на осях координат.

Взаимное расположение плоскостей.

Угол между плоскостями

N1, N2 -нормальные векторы плоскости.

P:A1x+B1y+C1z+D1=0

Q:A2x+B2y+C2z+D2=0

P^Q{A1,B1,C1}

Q^ N 2{A2,B2,C2}

Угол между плоскостями

1)Пусть P^Q<=> N1 ^ N 2

A1A2+B1B2+C1C2=0 условие перпендикулярности P^Q.

2) Пусть P^Q<=> N1 ^ N 2

A1/A2=B1/B2=C1/C2- Условие параллельности 2х плоскостей.

A1/A2=B1/B2=C1/C2=D1/D2- Условие совпадения 2х плоскостей.

Парабола и ее свойства.

Множество точек плоскости, координаты которых по отношению к системе декартовых координат удовлетворяет уравнению y=ax2, где х и у - текущие координаты, а- нек. число, наз. параболой.

Если вершина нах. в О(0,0), то ур-е примет вид

y2=2px-симметрично отн. оси ОХ

х2=2pу-симметрично отн. оси ОУ

Точка F(p/2,0) наз. фокусом параболы, а прямая x=-p/2 - ее директриса.

Любой точке М(х,у), принадлежащей параболе, расстояние до фокуса = r=p/2

Св-ва:

1. парабола предст. собой ¥ точек плоскости, равноотстающих от фокуса и от директрисы y=ax2.

5.1. Канонические и параметрические уравн прямой. Урав прямой, проходящ через две точки.

l m n

S {x2-x1,y2-y1,z2-z1}

Каноническое уравнение прямой в пространстве:

где — координаты некоторой фиксированной точки , лежащей на прямой, - координаты вектора, коллинеарного этой прямой.

Параметрические уравнения прямой могут быть записаны в виде:

где t — производный параметр, при этом

 

Сведение общего урав. прямой в пространсве к каноническим уравнениям.

P:A1x+B1y+C1z+D1=0

Q:A2x+B2y+C2z+D2=0

 

­Общее ур-е прямой в пространстве.

Для того, чтобы перейти от общего к каноническому ур-ю прямой, надо задать начальную точку и направляющий вектор:

1. Найдем начальную точку:

Z=0

M0(x0,y0,0), т.к. Z=0

2. Найдем направляющий вектор S -?

P^ N1 {A1,B1,C1}

Q^ N1 {A2,B2,C2}

S = N1 * N2

 

Взаимн распол-ние прямй и плоскоси. Угол между прямой и плоскостью

P:A1x+B1y+C1z+D1=0^ N1 {A1,B1}

Q:A2x+B2y+C2z+D2=0^ N2 {A2,B2}

а)

то

Взаимное расположение прямой и плоскости

Плоскость и прямая

1) пересекаются

2) прямая лежит в плоскости

3) параллельны

Если то случаи 1 - 3 имеют место, когда:

1)

2)

3)

Нормальное уравнение плоскости. Расстояние от точки до плоскости.

в векторной форме:

где - единичный вектор, — расстояние П. от начала координат. Уравнение (2) может быть получено из уравнения (1) умножением на нормирующий множитель

(знаки и противоположны).

Расстояние от точки до плоскости

Расстояние от точки до плоскости — это наименьшее из расстояний между этой точкой и точками плоскости. расстояние от точки до плоскости равно длине перпендикуляра, опущенного из этой точки на плоскость.

Расстояние от точки , до плоскости, заданной уравнением , вычисляется по формуле:

2,3 Уравнение плоскости, проходящей через три заданные точки , не лежащие на одной прямой:

(смешанное произведение векторов), иначе

7.2. Способы задания прямой на плоскости: а)прям,проход-я через точку перпенд-но данному вектору; б)общ уравн в) урав в отрезках; г) урав прямой с угловым коэфф-нтом; д) урав прям, проходящ через точку в данном направлении.

Сначала запишем ур-е прямой, проходящей через заданную точку ^ заданному вектору.

M0(x0,y0)

M0M {x-x0,y-y0}

n* M0M =0

A(x-x0)+B(y-y0)=0

Ax+By-Ax0-By0=0

-Ax0-By0=C

Ax+By+C=0-общее уравнение прямой на плоскости.

Ур-е прямой с угловым коэффициентом k.

Пусть даны 2 точки M1(x1,y1), M2(x2,y2) и x1¹x2, y1¹y2. Для составления уравнения прямой М1М2 запишем уравнения пучка прямых, проходящих через точку М1: y-y1=k(x-x1). Т.к. М2лежит на данной прямой, то чтобы выделить ее из пучка, подставим координаты точки М2 в уравнение пучка М1: y-y1=k(x-x1) и найдем k:

 

Теперь вид искомой прямой имеет вид:

 

8.2. Взаимн располож прямых на пло-ти. Угол между прямыми

а)

S1 {l1,m1} S2 {l2,m2},

или

p:y=k1x+b1, k1=tgj1

q:y=k2x+b2, k2=tgj2 =>tgj=tg(j2-j1)=

=(tgj2-tgj1)/(1+ tgj1tgj2)=

=(k2-k1)/(1+k1k2).

б) p||q, tgj=0, k1=k2

в)p^q,то

 

Нормальное уравнение прямой. Расстояние от точки до прямой.

1. Ax+By+C=0, M0(x0,y0)

2. Пусть плоскость задана ур-ем Ax+By+Cz+D=0

 

12.2.Эллипс и его св-ва:

Кривая второго порядка наз. эллипсом если коэффициенты А и L имеют одинаковые знаки

Аx2+Cy2=d

ур.-е

наз. канонич. ур.-ем эллипса, где При а=в представляет собой ур-е окружности х2+y22

Точки F1(-c,0) и F2(c,0) - наз. фокусами эллипса а.

Отношение e=с/а наз. его эксцентриситетом (0<=e<=1)

Точки A1,A2,B1,B2 -вершины эллипса.

Св-во:
Для любой точки эллипса сумма расстояний этой точки до фокусов есть величина постоянной, =2а.

 

Гипербола и ее св-ва.

Кривая 2го порядка наз. гиперболой, если в ур-ии Ax2+Cy2=d, коэффициент А и С имеют противоположные знаки, т.е. А*С<0

б) Если d>0, то каноническое ур-е гиперболы примет вид: x2/a2-y2/b2=1, F1(c,o) и F2(-c,0) - фокусы ее, e>0, e=c/a - эксцентриситет.

Св-во:
для любой точки гиперболы абсолютная величина разности ее расстояний до фокусов есть величина постоянная = 2а.

б) если d=0, ур-е примет вид x2/a2-y2/b2=0, получаем 2 перекрестные прямые х/а±у/b=0

в) если d<0, то x2/a2-y2/b2=-1 - ур-е сопряженной гиперболы.

 



Поделиться:


Последнее изменение этой страницы: 2016-04-21; просмотров: 265; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.226.98.244 (0.006 с.)