Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Построение мощных переключающих элементов на основе пт. Преимущества и недостатки пт.

Поиск

Полевой транзистор - это полупроводниковый прибор, в котором ток основных носителей, протекающих через канал, управляется электрическим полем. Основа такого транзистора - созданный в полупроводнике и снабжённый двумя выводами (исток и сток) канал с электропроводностью n - или p - типа. Сопротивлением канала управляет третий электрод - затвор, соединённый с его средней частью p - n переходом.
Поскольку ток канала обусловлен носителями только одного знака, ПТ относят к классу униполярных транзисторов.

Полевой транзистор можно включать по одной из трех основных схем: с общим истоком (ОИ), общим стоком (ОС) и общим затвором (ОЗ).

На практике чаще всего применяется схема с ОИ, аналогичная схеме на биполярном транзисторе с ОЭ. Каскад с общим истоком даёт очень большое усиление тока и мощности. Схема с ОЗ аналогична схеме с ОБ. Она не даёт усиления тока, и поэтому усиление мощности в ней во много раз меньше, чем в схеме ОИ. Каскад ОЗ обладает низким входным сопротивлением, в связи с чем он имеет ограниченное практическое применение в усилительной технике.

По физической структуре и механизму работы полевые транзисторы условно делят на 2 группы. Первую образуют транзисторы с управляющим р-n переходом или переходом металл — полупроводник (барьер Шоттки), вторую — транзисторы с управлением посредством изолированного электрода (затвора), т. н. транзисторы МДП (металл — диэлектрик — полупроводник).

Полевой транзистор с управляющим p-n переходом — это полевой транзистор, затвор которого изолирован (то есть отделён в электрическом отношении) от канала p-n переходом, смещённым в обратном направлении.

Такой транзистор имеет два невыпрямляющих контакта к области, по которой проходит управляемый ток основных носителей заряда, и один или два управляющих электронно-дырочных перехода, смещённых в обратном направлении (см. рис. 1). При изменении обратного напряжения на p-n переходе изменяется его толщина и, следовательно, толщина области, по которой проходит управляемый ток основных носителей заряда. Область, толщина и поперечное сечение которой управляется внешним напряжением на управляющем p-n переходе и по которой проходит управляемый ток основных носителей, называют каналом. Электрод, из которого в канал входят основные носители заряда, называют истоком. Электрод, через который из канала уходят основные носители заряда, называют стоком. Электрод, служащий для регулирования поперечного сечения канала, называют затвором.

Полевой транзистор с изолированным затвором — это полевой транзистор, затвор которого отделён в электрическом отношении от канала слоем диэлектрика.

В кристалле полупроводника с относительно высоким удельным сопротивлением, который называют подложкой, созданы две сильнолегированные области с противоположным относительно подложки типом проводимости. На эти области нанесены металлические электроды — исток и сток. Расстояние между сильно легированными областями истока и стока может быть меньше микрона. Поверхность кристалла полупроводника между истоком и стоком покрыта тонким слоем (порядка 0,1 мкм) диэлектрика. Так как исходным полупроводником для полевых транзисторов обычно является кремний, то в качестве диэлектрика используется слой двуокиси кремния SiO2, выращенный на поверхности кристалла кремния путём высокотемпературного окисления. На слой диэлектрика нанесён металлический электрод — затвор. Получается структура, состоящая из металла, диэлектрика и полупроводника. Поэтому полевые транзисторы с изолированным затвором часто называют МДП-транзисторами.

Преимущества

Первое преимущество полевого транзистора очевидно: поскольку он управляется не током, а напряжением (электрическим полем), это значительно упрощает схему и снижает затрачиваемую на управление мощность.

Второе преимущество полевого транзистора можно обнаружить, если вспомнить, что в биполярном транзисторе, помимо основных но­сителей тока, существуют также и неосновные, которые прибор «на­бирает», благодаря току базы. С наличием неосновных носителей свя­зано хорошо нам знакомое время рассасываний, что в конечном ито­ге обуславливает задержку выключения транзистора. В полевых транзисторах нет неосновных носителей, поэтому они могут пере­ключаться с гораздо более высокой скоростью.

Третье преимущество обусловлено повышенной теплоустойчи­востью. Рост температуры полевого транзистора при подаче на него напряжения приведет, согласно закону Ома, к увеличению сопротив­ления открытого транзистора и, соответственно, к уменьшению тока. Поведение биполярного транзистора более сложно, повышение его температуры ведет к увеличению тока. Это означает, что биполярные транзисторы не являются термоустойчивыми приборами. В них мо­жет возникнуть очень опасный саморазогрев, который легко выводит транзистор из строя. Термоустойчивость полевого транзистора помогает разработчику при параллельном соединении приборов для увеличения нагрузочной способности. Можно включать параллельно достаточно большое число MOSFEТов без выравнивающих резисторов в силовых цепях и при этом не опасаться рассимметрирования токов, что очень опасно для биполярных транзисторов. Однако параллельное соединение полевых транзисторов тоже имеет свои особенности, и об этом мы поговорим чуть позже.

Последнее преимущество полевого транзистора связано с его тепловыми свойствами — полное отсутствие вторичного пробоя. Это преимущество позволяет эффективнее использовать полевой транзистор по передаваемой мощности. На рис.2 обозначены области безопасной работы мощного биполярного и полевого транзисторов, максимальные токи и напряжения которых выбраны примерно одинаковыми.

Недостатки

Во-первых, полевой транзистор в открытом состоянии имеет, пусть небольшое, но все же активное сопротивление. Это сопротивление мало только у транзисторов с допустимым напряжением «сток-исток» не более 250—300 В, то есть составляет десятки милли-ом. Далее, с повышением допустимого напряжения «сток-исток», наблюдается значительный рост сопротивления в открытом состоянии. Это обстоятельство заставляет разработчика соединять приборы параллельно, ограничивать мощность, приходящуюся на один транзистор, то есть работать «с недогрузкой», тщательно прорабатывать теп­ловой режим.

Второй недостаток полевого транзистора связан с технологией его изготовления. До настоящего времени технологически не удается из­готовить мощный полевой транзистор без некоторых паразитных эле­ментов, одним из которых является паразитный биполярный транзи­стор, который показан на рис. 3.

 

Рисунок 3- Паразитные элементы в составе полевого транзистора.



Поделиться:


Последнее изменение этой страницы: 2016-04-19; просмотров: 204; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.135.208.189 (0.009 с.)