Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Тиристор в цепи переменного токаСодержание книги
Поиск на нашем сайте
При включении тиристора в цепь переменного тока возможно осуществление следующих операций: включение и отключение электрической цепи с активной и активно-реактивной нагрузкой; изменение среднего и действующего значений тока через нагрузку за счёт того, что имеется возможность регулировать момент подачи сигнала управления. Так как тиристорный ключ способен проводить электрический ток только в одном направлении, то для использования тиристоров на переменном токе применяется их встречно-параллельное включение (рис. 4,а). Рис. 4. Встречно-параллельное включение тиристоров (а) и форма тока при активной нагрузке (б) Среднее и действующее значения тока варьируются за счёт изменения момента подачи на тиристоры VS1 и VS2 открывающих сигналов, т.е. за счёт изменения угла и (рис. 4,б). Значения этого угла для тиристоров VS1 и VS2 при регулировании изменяется одновременно при помощи системы управления. Угол называется углом управления или углом отпирания тиристора. Наиболее широкое применение в силовых электронных аппаратах получили фазовое (рис. 4,а,б) и широтно-импульсное управление тиристорами (рис. 4,в). Рис. 5. Вид напряжения на нагрузке при: а) – фазовом управлении тиристором; б) – фазовом управлении тиристором с принудительной коммутацией; в) – широтно-импульсном управлении тиристором При фазовом методе управления тиристором с принудительной коммутацией регулирование тока нагрузки возможно как за счёт изменения угла α, так и угла θ. Искусственная коммутация осуществляется с помощью специальных узлов или при использовании полностью управляемых (запираемых) тиристоров. При широтно-импульсном управлении (широтно-импульсной модуляции – ШИМ) в течение времени Тоткр на тиристоры подан управляющий сигнал, они открыты и к нагрузке приложено напряжение Uн. В течение времени Тзакр управляющий сигнал отсутствует и тиристоры находятся в непроводящем состоянии. Действующее значение тока в нагрузке где Iн.м. – ток нагрузки при Тзакр = 0. Кривая тока в нагрузке при фазовом управлении тиристорами несинусоидальна, что вызывает искажение формы напряжения питающей сети и нарушения в работе потребителей, чувствительных к высокочастотным помехам – возникает так называемая электромагнитная несовместимость. Двухтранзисторная модель Для объяснения характеристик прибора в режиме прямого запирания используется двухтранзисторная модель. Тиристор можно рассматривать как соединение p-n-p транзистора с n-p-n транзистором, причём коллектор каждого из них соединён с базой другого, как показано на рис. 4 для триодного тиристора. Центральный переход действует как коллектор дырок, инжектируемых переходом J1, и электронов, инжектируемых переходом J3. Взаимосвязь между токами эмиттера IE, коллектора IC и базы IB и статическим коэффициентом усиления по току α1 p-n-p транзистора также приведена на рис. 4, где IСо— обратный ток насыщения перехода коллектор-база. Аналогичные соотношения можно получить для n-p-n транзистора при изменении направления токов на противоположное. Из рис. 4 следует, что коллекторный ток n-p-n транзистора является одновременно базовым током p-n-p транзистора. Аналогично коллекторный ток p-n-p транзистора и управляющий ток Ig втекают в базу n-p-n транзистора. В результате, когда общий коэффициент усиления в замкнутой петле превысит 1, оказывается возможным регенеративный процесс. Ток базы p-n-p транзистора равен IB1 = (1 — α1)IA — ICo1. Этот ток также протекает через коллектор n-p-n транзистора. Ток коллектора n-p-n транзистора с коэффициентом усиления α2 равен IC2 = α2IK + ICo2. Приравняв IB1 и IC2, получим (1 — α1)IA — ICo1 = α2IK + ICo2. Так как IK = IA + Ig, то Это уравнение описывает статическую характеристику прибора в диапазоне напряжений вплоть до пробоя. После пробоя прибор работает как p-i-n-диод. Отметим, что все слагаемые в числителе правой части уравнения малы, следовательно, пока член α1 + α2 < 1, ток IA мал. (Коэффициенты α1 и α2 сами зависят от IA и обычно растут с увеличением тока) Если α1 + α2 = 1, то знаменатель дроби обращается в нуль и происходит прямой пробой (или включение тиристора). Следует отметить, что если полярность напряжения между анодом и катодом сменить на обратную, то переходы J1 и J3 будут смещены в обратном направлении, а J2 — в прямом. При таких условиях пробой не происходит, так как в качестве эмиттера работает только центральный переход и регенеративный процесс становится невозможным. Ширина обеднённых слоёв и энергетические зонные диаграммы в равновесии, в режимах прямого запирания и прямой проводимости показаны на рис. 5. В равновесии обеднённая область каждого перехода и контактный потенциал определяются профилем распределения примесей. Когда к аноду приложено положительное напряжение, переход J2 стремится сместиться в обратном направлении, а переходы J1 и J3 — в прямом. Падение напряжения между анодом и катодом равно алгебраической сумме падений напряжения на переходах: VAK = V1 + V2 + V3. По мере повышения напряжения возрастает ток через прибор и, следовательно, увеличиваются α1 и α2. Благодаря регенеративному характеру этих процессов прибор в конце концов перейдёт в открытое состояние. После включения тиристора протекающий через него ток должен быть ограничен внешним сопротивлением нагрузки, в противном случае при достаточно высоком напряжении тиристор выйдет из строя. Во включенном состоянии переход J2 смещён в прямом направлении (рис. 5, в), и падение напряжения VAK = (V1 — |V2| + V3) приблизительно равно сумме напряжения на одном прямосмещенном переходе и напряжения на насыщенном, транзисторе. 34. Принципы построения современных силовых биполярных транзисторов, основные параметры. Стремление объединить в одном транзисторе положительные свойства биполярного и полевого транзисторов привело к созданию IGBT – транзистора (рис. 1., d). IGBT – транзистор имеет низкие потери мощности во включенном состоянии подобно биполярному транзистору и высокое входное сопротивление цепи управления, характерное для полевого транзистора. Рис. 1. Условно-графические обозначения транзисторов: a) – биполярный транзистор п-р-п-типа; b) – MOSFET-транзистор с каналом п-типа; c) – SIT-транзистор с управляющим p-n-переходом; d) – IGBT-транзистор. Коммутируемые напряжения силовых IGBT – транзисторов, так же как и биполярных, не более 1200 В, а предельные значения токов достигают нескольких сот ампер при частоте 20 кГц. Приведённые выше характеристики обуславливают области применения различных типов силовых транзисторов в современных силовых электронных устройствах. Традиционно применялись биполярные транзисторы, основной недостаток которых заключается в потреблении значительного тока базы, что требовало мощного оконечного каскада управления и приводило к снижению КПД устройства в целом. Затем были разработаны полевые транзисторы, более быстродействующие и потребляющие небольшие мощности из системы управления. Основным недостатком МОП – транзисторов являются большие потери мощности от протекания силового тока, что определяется особенностью статической ВАХ. В последнее время лидирующее положение в области применения занимают IGBT – транзисторы, сочетающие в себе достоинства биполярных и полевых транзисторов.
|
||||
Последнее изменение этой страницы: 2016-04-19; просмотров: 399; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.89.89 (0.006 с.) |