Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Непосредственное управление данными во внешней памяти.↑ Стр 1 из 5Следующая ⇒ Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Основные функции СУБД Непосредственное управление данными во внешней памяти. Эта функция включает обеспечение необходимых структур внешней памяти как для хранения данных, непосредственно входящих в БД, так и для служебных целей, например, для убыстрения доступа к данным в некоторых случаях (обычно для этого используются индексы). СУБД обычно работают с БД значительного размера; по крайней мере этот размер обычно существенно больше доступного объема оперативной памяти. Понятно, что если при обращении к любому элементу данных будет производиться обмен с внешней памятью, то вся система будет работать со скоростью устройства внешней памяти. Практически единственным способом реального увеличения этой скорости является буферизация данных в оперативной памяти. При этом, даже если операционная система производит общесистемную буферизацию (как в случае ОС UNIX), этого недостаточно для целей СУБД, которая располагает гораздо большей информацией о полезности буферизации той или иной части БД. Поэтому в развитых СУБД поддерживается собственный набор буферов оперативной памяти с собственной дисциплиной замены буферов. Управление транзакциями Транзакция - это последовательность операций над БД, рассматриваемых СУБД как единое целое. Либо транзакция успешно выполняется, и СУБД фиксирует (COMMIT) изменения БД, произведенные этой транзакцией, во внешней памяти, либо ни одно из этих изменений никак не отражается на состоянии БД. Понятие транзакции необходимо для поддержания логической целостности БД. Но понятие транзакции гораздо более важно в многопользовательских СУБД. То свойство, что каждая транзакция начинается при целостном состоянии БД и оставляет это состояние целостным после своего завершения, делает очень удобным использование понятия транзакции как единицы активности пользователя по отношению к БД. При соответствующем управлении параллельно выполняющимися транзакциями со стороны СУБД каждый из пользователей может в принципе ощущать себя единственным пользователем СУБД (на самом деле, это несколько идеализированное представление, поскольку в некоторых случаях пользователи многопользовательских СУБД могут ощутить присутствие своих коллег). Журнализация Одним из основных требований к СУБД является надежность хранения данных во внешней памяти. Под надежностью хранения понимается то, что СУБД должна быть в состоянии восстановить последнее согласованное состояние БД после любого аппаратного или программного сбоя. Обычно рассматриваются два возможных вида аппаратных сбоев: так называемые мягкие сбои, которые можно трактовать как внезапную остановку работы компьютера (например, аварийное выключение питания), и жесткие сбои, характеризуемые потерей информации на носителях внешней памяти. Примерами программных сбоев могут быть: аварийное завершение работы СУБД (по причине ошибки в программе или в результате некоторого аппаратного сбоя) или аварийное завершение пользовательской программы, в результате чего некоторая транзакция остается незавершенной. объект попадет во внешнюю память основной части БД. Известно, что если в СУБД корректно соблюдается протокол WAL, то с помощью журнала можно решить все проблемы восстановления БД после любого сбоя. Поддержка языков БД Для работы с базами данных используются специальные языки, в целом называемые языками баз данных. Стандартным языком наиболее распространенных в настоящее время реляционных СУБД является язык SQL (Structured Query Language). В нескольких лекциях этого курса язык SQL будет рассматриваться достаточно подробно, а пока мы перечислим основные функции реляционной СУБД, поддерживаемые на "языковом" уровне (т.е. функции, поддерживаемые при реализации интерфейса SQL). Прежде всего, язык SQL сочетает средства SDL и DML, т.е. позволяет определять схему реляционной БД и манипулировать данными. При этом именование объектов БД (для реляционной БД - именование таблиц и их столбцов) поддерживается на языковом уровне в том смысле, что компилятор языка SQL производит преобразование имен объектов в их внутренние идентификаторы на основании специально поддерживаемых служебных таблиц-каталогов. Внутренняя часть СУБД (ядро) вообще не работает с именами таблиц и их столбцов. Наконец, авторизация доступа к объектам БД производится также на основе специального набора операторов SQL. №3 КЛАССИФИКАЦИЯ СУБД В общем случае под СУБД можно понимать программный продукт, поддерживающий процессы создания, ведения и использования БД. К СУБД относятся следующие основные виды программ: § полнофункциональные СУБД; § серверы БД; § клиенты БД; § средства разработки программ работы с БД. Полнофункциональные СУБД представляют собой традиционные СУБД, которые сначала появились для больших машин, затем для минимашин и для ПЭВМ. К ним относятся такие пакеты, как: Clarion Database Developer, DataEase, DataFlex, dBaseIV, Microsoft Access, FoxPro, Paradox. Обычно полнофункциональные СУБД имеют развитый интерфейс, позволяющий с помощью команд меню выполнять основные действия с БД: создавать и модифицировать структуры таблиц, вводить данные, формировать запросы, разрабатывать отчеты, выводить их на печать и т.п. Многие полнофункциональные СУБД включают средства программирования для профессиональных разработчиков. Некоторые системы имеют в качестве вспомогательных и дополнительные средства проектирования схем БД. Для обеспечения доступа к другим БД или к данным SAL-серверов полнофункциональные СУБД имеют специальные библиотеки функций. Серверы БД предназначены для организации центров обработки данных в сетях ЭВМ. Серверы БД реализуют функции управления базами данных, запрашиваемые другими (клиентскими) программами обычно с помощью операторов SQL. Примеры серверов БД: MS SQL Server (Microsoft), InterBase (Borland), Intelligent Database (Ingress). В роли клиентских программ для серверов БД могут использоваться различные программы: полнофункциональные СУБД, программы электронной почты и т.д. При этом элементы пары «клиент-сервер» могут принадлежать одному или разным производителям программного обеспечения. Средства разработки программ работы с БД могут использоваться для создания разновидностей следующих программ: § клиентских программ; § серверов БД и их отдельных компонентов; § пользовательских приложений. Программы первого и второго вида предназначены, главным образом, для программистов. К средствам разработки пользовательских приложений относятся системы программирования, например, Clipper, разнообразные библиотеки программ для различных языков программирования, а также пакеты автоматизации разработок. Наиболее распространенными являются следующие инструментальные системы: Delphi и Power Builder (Borland), Visual Basic (Microsoft), SILVERRUN (Computer Advisers Inc.), Erwin (LogicWorks). По языкам общения СУБД делятся на открытые, замкнутые и смешанные. Открытые системы – это системы, в которых для обращения к базам данных используются универсальные языки программирования. Замкнутые системы имеют собственные языки общения с пользователями БнД Открытые системы в настоящее время используются редко. По числу уровней в архитектуре различают одноуровневые, двухуровневые, трехуровневые системы. В принципе возможно выделение и большего числа уровней. Под архитектурным уровнем СУБД понимают функциональный компонент, механизмы которого служат для поддержки некоторого уровня абстракции данных (логический и физический уровень, а также «взгляд» пользователя – внешний уровень). По выполняемым функциям СУБД делятся на информационные и операционные. Информационные СУБД позволяют организовать хранение информации и доступ к ней. Для выполнения более сложной обработки необходимо писать специальные программы. Операционные СУБД выполняют достаточно сложную обработку, например, автоматически позволяют получать показатели, не хранящиеся непосредственно в базе данных, могут изменять алгоритмы обработки и т.д. По сфере возможного применения различают универсальные и специализированные, обычно проблемно-ориентированные СУБД. По характеру использования СУБД делят на персональные и многопользовательские. Персональные СУБД обычно обеспечивают возможность создания персональных БД и недорогих приложений, работающих с ними. Персональные СУБД или разработанные с их помощью приложения зачастую могут выступать в роли клиентской части многопользовательской СУБД. К персональным СУБд, например, относятся Visual FoxPro, Paradox, Clipper, Access и др. Многопользовательские СУБД включают в себя сервер БД и клиентскую часть и, как правило, могут работать в неоднородной вычислительной среде (с разными типами ЭВМ и операционными системами). К многопользовательским СУБД относятся, например, СУБД Oracle и Informix. №4 смотри вопрос №1 Классификация баз данных: 1.По характеру хранимой информации: 2.По способу хранения данных: 3.По структуре организации данных: Информация в базах данных структурирована на отдельные записи, которыми называют группу связанных между собой элементов данных. Характер связи между записями определяет два основных типа организации баз данных: иерархический и реляционный. №5 Файл-сервер. Архитектура систем БДс сетевым доступом предполагает выделение одной из машин сети в качестве центральной (файловый сервер). На этот компьютер устанавливается операционная система (ОС) для выделенного сервера (например, Microsoft Windows Server 2003). На нем же хранится совместно используемая централизованная БД в виде одного или группы файлов. Все другие компьютеры сети выполняют функции рабочих станций (могут работать в ОС Microsoft Windows 2000 Professional или Microsoft Windows 98). Файлы базы данных в соответствии с пользовательскими запросами передаются на рабочие станции, где ипроизводится обработка информации (см. рис.2.1). При большой интенсивности доступа к одним и тем же данным производительность информационной системы падает. Пользователи могут создаватьтакже локальные БД на рабочих станциях. Клиент-сервер. В этой архитектуре на выделенном сервере, работающем под управлением серверной операционной системы,устанавливается специальное программное обеспечение (ПО) - сервер БД, например,Microsoft®SQL Server™или Oracle. СУБД подразделяется на две части: клиентскую исерверную. Основа работы сервера БД - использование языка запросов (SQL).Запрос на языке SQL, передаваемый клиентом (рабочей станцией) серверу БД,порождает поиск и извлечение данных на сервере. Извлеченные данныетранспортируются по сети от сервера к клиенту (см. рис.2.2). Тем самым, количество передаваемой по сети информации уменьшается вомного раз. №6 Иерархические базы данных В основе данной модели - иерархическая модель данных. В этой модели имеется один главный объект и остальные - подчиненные - объекты, находящиеся на разных уровнях иерархии. Взаимосвязи объектов образуют иерархическое дерево с одним корневым объектом. Иерархическая БД состоит из упорядоченного набора нескольких экземпляров одного типа дерева. Автоматически поддерживается целостность ссылок между предками и потомками. Основное правило: никакой потомок не может существовать без своего родителя Типичнымпредставителем (наиболее известным и распространенным) является Information Management System (IMS) фирмы IBM. Первая версия появилась в 1968 г. До сих порподдерживается много баз данных этой системы. №7 Сетевые базы данных Сетевой подход к организации данных является расширением иерархического. В иерархических структурах запись-потомок должна иметь в точности одного предка;в сетевой структуре данных потомок может иметь любое число предков. В сетевой модели данных любой объект может быть одновременно и главным, и подчиненным, и может участвовать в образовании любого числа взаимосвязей с другими объектами. Сетевая БД состоит из набора записей и набора связей между этими записями, а если говорить более точно - из набора экземпляров каждого типа из заданного в схеме БД набора типов записи и набора экземпляров каждого типа из заданного набора типов связи. Типичнымпредставителем является Integrated Database Management System (IDMS) компании CullinetSoftware, Inc.,предназначенная для использования на машинах основного класса фирмы IBM подуправлением большинства операционных систем. Архитектура системы основана напредложениях Data Base Task Group (DBTG) Комитета поязыкам программирования Conference on Data SystemsLanguages (CODASYL) - организации, ответственной заопределение языка программирования Кобол. Отчет DBTG был опубликован в 1971 г., а позже появилосьнесколько систем, среди которых IDMS №8 Термин «реляционный» (от латинского relatio — отношение) указывает, прежде всего, на то, что такая модель хранения данных построена на взаимоотношении составляющих ее частей. В простейшем случае она представляет собой двухмерный массив или двухмерную таблицу, а при создании сложных информационных моделей составит совокупность взаимосвязанных таблиц. Столбцы таблицы называются полями: каждое поле характеризуется своим именем и типом данных. Поле БД – это столбец таблицы, содержащий значения определенного свойства. В реляционной БД используются четыре основных типов полей: · Числовой, · Символьный (слова,тексты, коды и т.д.), · Дата (календарные датыв форме «день/месяц/год»), · Логический (принимаетдва значения: «да» - «нет» или «истина» - «ложь»). Строки таблицы являются записями об объекте. Запись БД – это строка таблицы, содержащая набор значения определенного свойства, размещенный в полях базы данных. №9 Смотри №8 Домен - это семантическое понятие. Домен можно рассматривать как подмножество значений некоторого типа данных имеющих определенный смысл. Домен характеризуется следующими свойствами: Домен имеет уникальное имя (в пределах базы данных). Домен определен на некотором простом типе данных или на другом домене. Домен может иметь некоторое логическое условие, позволяющее описать подмножество данных, допустимых для данного домена. Домен несет определенную смысловую нагрузку. Кортеж, соответствующий данной схеме отношения, - это множество пар {имя атрибута, значение }, которое содержит одно вхождение каждого имени атрибута, принадлежащего схеме отношения. "Значение" является допустимым значением домена данного атрибута (или типа данных, если понятие домена не поддерживается). Попросту говоря, кортеж - это набор именованных значений заданного типа. Отношение - это множество кортежей, соответствующих одной схеме отношения. На самом деле, понятие схемы отношения ближе всего к понятию структурного типа данных в языках программирования. Отношение обычно записывается в виде: , или короче . Число атрибутов в отношении называют степенью (или -арностью) отношения. Мощность множества кортежей отношения называют мощностью отношения. №10 Смотри №8 Первичный ключ - идентифицирующая совокупность атрибутов, т.е. значение этих атрибутов уникально в данном отношении. Не существует двух экземпляров отношения содержащих одинаковые значения в первичном ключе. Атрибут отношения есть пара вида <Имя_атрибута: Имя_домена>. Имена атрибутов должны быть уникальны в пределах отношения. Часто имена атрибутов отношения совпадают с именами соответствующих доменов.
№11 Смотри №8 Поскольку строки в таблице неупорядочены, нам нужна колонка (или набор из нескольких колонок) для уникальной идентификации каждой строки. Такая колонка (или набор колонок) называется первичным ключом (primary key). Первичный ключ любой таблицы обязан содержать уникальные непустые значения для каждой строки. Если первичный ключ состоит из более чем одной колонки, он называется составным первичным ключом (composite primary key). внешний ключ - это колонка или набор колонок, чьи значения совпадают с имеющимися значениями первичного ключа другой таблицы. Подобное взаимоотношение между таблицами называется связью (relationship). Связь между двумя таблицами устанавливается путем присваивания значений внешнего ключа одной таблицы значениям первичного ключа другой. №12 Предметная область (ПО) – часть реального мира, подлежащая изучению с целью организации управления и последующей автоматизации. ПО определена, если известны существующие в ней объекты, их свойства и отношения. Модель данных – представление о предметной области в виде данных и связей между ними, т.е. это совокупность взаимосвязанных структур данных и операций над этими структурами. Модель предметной области описывает процессы, происходящие в предметной области, и данные, используемые этими процессами. Знания об этих процессах должны быть выражены с помощью текстовых описаний предметной области (наборов должностных инструкций, правил ведения дел в компании и т. п.). Сущность представляет собой объект, информация о котором хранится в БД. Экземпляры сущности отличаются друг от друга и однозначно идентифицируются. Названиями сущности являются, как правило, существительные, например: ПРЕПОДАВАТЕЛЬ, ДИСЦИПЛИНА, КАФЕДРА, ГРУППА.отки приложений Атрибут представляет собой свойство сущности. Это понятие аналогично понятию атрибута в отношении как атрибутам сущности ПРЕПОДАВАТЕЛЬ может быть его Фамилия, Должность, Стаж (преподавательский) и т.д. ^ Ключ сущности - атрибут или набор атрибутов, используемый для идентификации экземпляра сущности. Понятие ключа сущности аналогично понятию ключа отношения. ^ Связь двух или более сущностей – предполагает зависимость между атрибутами этих сущностей. Название связи обычно представляется глаголом. Пример связи между сущностями: ПРЕПОДАВАТЕЛЬ ВЕДЕТ ДИСЦИПЛИНУ (Иванов ВЕДЕТ «Базы данных»). №13 Смотри №12 ER-диаграмма Одна из основных целей семантического моделирования состоит в том, чтобы результаты анализа предметной области были отражены в достаточно простом, наглядном, но в то же время формализованном и достаточно информативном виде. В этом смысле ER-диаграммаявляется очень удачным решением. В ней сочетаются функциональный и информационный подходы, что позволяет представлять как совокупность выполняемых функций, так и отношения между элементами системы, задаваемые структурами данных. При этом графическая форма позволяет отобразить в компактном виде (за счет наглядных условных обозначений) типологию и свойства сущностей и связей, а формализмы, положенные в основу ER-диаграмм,позволяют использовать на следующем шаге проектирования логической структуры базы данных строгий аппарат нормализации. Сущности. Каждый тип сущности в ER-диаграммах представляется в виде прямоугольника, содержащего имя сущности. В качестве имени обычно используются существительные (или обороты существительного) в единственном числе. Для отражения сущностей слабых типов используются прямоугольники, стороны которых рисуются двойными линиями. Например, в рассматриваемой далее ER-диаграмме, приведенной на рис. 5.4, ПОДЧИНЕННЫЙ — сущность слабого типа. Свойства. Свойства служат для уточнения, идентификации, характеристики или выражения состояния сущности или связи. Свойства отображаются в виде эллипсов, содержащих имя свойства. Эллипс соединяется с соответствующей сущностью или связью линией. Имена ключевых свойств подчеркиваются, например, свойство «Табельный номер» сущности СОТРУДНИК. Контур эллипса рисуется двойной линией, если свойство многозначное, например, свойство «Специальность» сущности СОТРУДНИК. Контур эллипса рисуется штриховой линией, если свойство производное, например, свойство «Кол-во» сущности ПОСТАВЩИК. Эллипс соединяется пунктирной линией, если свойство условное, например, свойство «Иностранный язык» сущности СОТРУДНИК. Если свойство составное, то составляющие его свойства отображаются другими эллипсами, соединенными с эллипсом составного, например, свойство «Адрес» сущности СОТРУДНИК состоит из простых свойств «Город», «Улица», «Дом». Связи. Связь — это графически изображаемая ассоциация, устанавливаемая между сущностями. Каждый тип связи на ER-диаграмме отображается в виде ромба с именем связи внутри. В качестве имени обычно используются отглагольные существительные. Стороны ромба рисуют двойными линиями, если это связь сущности слабого типа с сущностью, от которой она зависит. Например, связь «Подчинение», связывающая сущность слабого типа ПОДЧИНЕННЫЙ с сущностью СОТРУДНИК, от которой она зависит. Участники связи соединены со связью линиями. Двойная линия обозначает полное участие сущности в связи с данной стороны. Например, связь «Подчинение» со стороны сущности ПОДЧИНЕННЫЙ. Связь может быть модифицирована указанием роли. Например, для рекурсивной связи «Состав» указаны роли: «Деталь состоит из...» и «Деталь входит в состав...». Тип связи указывается индексами «1» или «М» над соответствующей линией. Например, связь «Руководство» имеет тип «один ко многим»: один сотрудник может руководить многими проектами; связь «Участие» имеет тип «многие ко многим»: один сотрудник может участвовать во многих проектах, и в проекте могут участвовать многие сотрудники. №14 Сначала будет рассмотрен классический подход, при котором весь процесс проектирования производится в терминах реляционной модели данных методом последовательных приближений к удовлетворительному набору схем отношений. Исходной точкой является представление предметной области в виде одного или нескольких отношений, и на каждом шаге проектирования производится некоторый набор схем отношений, обладающих лучшими свойствами. Процесс проектирования представляет собой процесс нормализации схем отношений, причем каждая следующая нормальная форма обладает свойствами лучшими, чем предыдущая. Каждой нормальной форме соответствует некоторый определенный набор ограничений, и отношение находится в некоторой нормальной форме, если удовлетворяет свойственному ей набору ограничений. Примером набора ограничений является ограничение первой нормальной формы - значения всех атрибутов отношения атомарны. Поскольку требование первой нормальной формы является базовым требованием классической реляционной модели данных, мы будем считать, что исходный набор отношений уже соответствует этому требованию. В теории реляционных баз данных обычно выделяется следующая последовательность нормальных форм: · первая нормальная форма (1NF); · вторая нормальная форма (2NF); · третья нормальная форма (3NF); · нормальная форма Бойса-Кодда (BCNF); · четвертая нормальная форма (4NF); · пятая нормальная форма, или нормальная форма проекции-соединения (5NF или PJ/NF). Основные свойства нормальных форм: · каждая следующая нормальная форма в некотором смысле лучше предыдущей; · при переходе к следующей нормальной форме свойства предыдущих нормальных свойств сохраняются. В основе процесса проектирования лежит метод нормализации, декомпозиция отношения, находящегося в предыдущей нормальной форме, в два или более отношения, удовлетворяющих требованиям следующей нормальной формы. №15 Процесс проектирования БД с использованием метода нормальных форм является итерационным и заключается в последовательном переводе отношений из первой нормальной формы в нормальные формы более высокого порядка по определенным правилам. Каждая следующая нормальная форма ограничивает определенный тип функциональных зависимостей, устраняет соответствующие аномалии при выполнении операций над отношениями БД и сохраняет свойства предшествующих нормальных форм. Первая нормальная форма. Отношение находится в 1НФ, если все его атрибуты являются простыми (имеют единственное значение). Исходное отношение строится таким образом, чтобы оно было в 1НФ. Перевод отношения в следующую нормальную форму осуществляется методом «декомпозиции без потерь». Такая декомпозиция должна обеспечить то, что запросы (выборка данных по условию) к исходному отношению и к отношениям, получаемым в результате декомпозиции, дадут одинаковый результат. Основной операцией метода является операция проекции. Поясним ее на примере. Предположим, что в отношении R(A,B,C,D,E,...) устранение функциональной зависимости С—>D позволит перевести его в следующую нормальную форму. Для решения этой задачи выполним декомпозицию отношения R на два новых отношения R1(A,B,C,E,...) и R2(C,D). Отношение R2 является проекцией отношения R на атрибуты С и D. №16. Вторая нормальная форма. Отношение находится в 2НФ, если оно находится в 1НФ и каждый неключевой атрибут функционально полно зависит от первичного ключа (составного). Для устранения частичной зависимости и перевода отношения в 2НФ необходимо, используя операцию проекции, разложить его на несколько отношений следующим образом: • построить проекцию без атрибутов, находящихся в частичной функциональной зависимости от первичного ключа; В результате получим два отношения R1 и R2 в 2НФ Отношение находится в ЗНФ, если оно находится в 2НФ и каждый неключевой атрибут нетранзитивно зависит от первичного ключа. Или: Таблица находится в третьей нормальной форме (ЗНФ), если она удовлетворяет определению 2НФ и ни один из ее неключевых атрибутов не связан функциональной зависимостью с любым другим неключевым атрибутом. Доказать справедливость этого утверждения несложно. Действительно, то, что неключевые атрибуты полностью зависят от первичного ключа, означает, что данное отношение находится в форме 2НФ. Взаимная независимость атрибутов (определение приведено выше) означает отсутствие всякой зависимости между атрибутами отношения, в том числе и транзитивной зависимости между ними. Таким образом, второе определение ЗНФ сводится к первому определению. Если в отношении R1 транзитивные зависимости отсутствуют, то в отношении R2 они есть: ФИО—>Должн—>Оклад, Транзитивные зависимости также порождают избыточное дублирование информации в отношении. Устраним их. Для этого используя операцию проекции на атрибуты, являющиеся причиной транзитивных зависимостей, преобразуем отношение R2, получив при этом отношения R3, R4 и R5, каждое из которых находится в ЗНФ (рис. 4а). Графически эти отношения представлены на рис. 4 б. Заметим, что отношение R2 можно преобразовать по-другому, а именно: в отношении R3 вместо атрибута Должн взять атрибут Оклад. №17 Основные виды зависимостей между атрибутами отношений: функциональные, транзитивные и многозначимые. Атрибут В функционально зависит от атрибута А, если каждому значению А соответствует в точности одно значение В. Математически функциональная зависимость зависимость В от А обозначается записью А→В. Это значит, что во всех кортежах с одинаковым значением атрибута А атрибут В будет иметь также одно и то же значение. ^ Функциональная взаимозависимость. Если существует функциональная зависимость вида А→ В и В→А, то между А и В имеется взаимно однозначное соответствие, или функциональная взаимосвязь. Наличие функциональной взаимозависимости между атрибутами А и В обозначим как А↔В или В↔А. ^ Частичной зависимостью (частичной функциональной зависимостью) называется зависимость неключевого атрибута от части составного ключа. Альтернативным вариантом является полная функциональная зависимость неключевого атрибута от всего составного ключа. В нашем примере атрибут ВидЗан находится в полной функциональной зависимости от составного ключа. Атрибут С зависит от атрибута А транзитивно ( существует транзитивнаязависимость ), если для атрибутов А,В,С выполняются условия А→В и В→А, но обратная зависимость отсутствует. №18,19 Будем называть отношения совместимыми по типу, если они имеют идентичные заголовки, а именно, · Отношения имеют одно и то же множество имен атрибутов, т.е. для любого атрибута в одном отношении найдется атрибут с таким же наименованием в другом отношении, · Атрибуты с одинаковыми именами определены на одних и тех же доменах. Некоторые отношения не являются совместимыми по типу, но становятся таковыми после некоторого переименования атрибутов. Для того чтобы такие отношения можно было использовать в реляционных операторах, вводится вспомогательный оператор переименования атрибутов. Основная идея реляционной алгебры состоит в том, что коль скоро отношения являются множествами, то средства манипулирования отношениями могут базироваться на традиционных теоретико-множественных операциях, дополненных некоторыми специальными операциями, специфичными для баз данных. Объединение Объединением двух совместимых по типу отношений и называется отношение с тем же заголовком, что и у отношений и , и телом, состоящим из кортежей, принадлежащих или , или , или обоим отношениям. Синтаксис операции объединения: Замечание. Объединение, как и любое отношение, не может содержать одинаковых кортежей. Поэтому, если некоторый кортеж входит и в отношение , и отношение , то в объединение он входит один раз. Пример 2. Пусть даны два отношения и с информацией о сотрудниках:
Таблица 1 Отношение A Таблица 2 Отношение B Объединение отношений и будет иметь вид: Таблица 3 Отношение A UNION B Пересечение Определение 3. Пересечением двух совместимых по типу отношений и называется отношение с тем же заголовком, что и у отношений и , и телом, состоящим из кортежей, принадлежащих одновременно обоим отношениям и . Синтаксис операции пересечения: Пример 3. Для тех же отношений и , что и в предыдущем примере пересечение имеет вид:
Таблица 4 Отношение A INTERSECT B Вычитание Определение 4. Вычитанием двух совместимых по типу отношений и называется отношение с тем же заголовком, что и у отношений и , и телом, состоящим из кортежей, принадлежащих отношению и не принадлежащих отношению . Синтаксис операции вычитания: Пример 4. Для тех же отношений и , что и в предыдущем примере вычитание имеет вид:
|